自定心摇动钢架与支柱中高上移:实验和数值研究

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Yan Guo , Ming Lian , Yuhao Zhou , Mingzhou Su
{"title":"自定心摇动钢架与支柱中高上移:实验和数值研究","authors":"Yan Guo ,&nbsp;Ming Lian ,&nbsp;Yuhao Zhou ,&nbsp;Mingzhou Su","doi":"10.1016/j.soildyn.2024.109065","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a self-centering rocking steel frame with column mid-height uplift (SCRSF-CMU) that exhibits high post-yield stiffness and energy dissipation capacity. The hysteretic performance of the SCRSF-CMU was investigated through cyclic loading tests. A numerical model of the SCRSF-CMU was established and validated against experimental results. Subsequently, the seismic performance of the SCRSF-CMU was compared with that of the self-centering rocking steel frame with column base uplift (SCRSF-CBU) using nonlinear time history analysis. Finally, the seismic responses of the SCRSF-CMU and SCRSF-CBU under varying earthquake intensities were analyzed using the endurance time analysis. The results indicate that the designed SCRSF-CMU demonstrates excellent lateral force resistance, energy dissipation, and self-centering capabilities. The rocking effect and the restoring force of the post-tensioned steel strands effectively controlled the residual lateral displacement of the specimens. The multi-scale numerical model of the SCRSF-CMU accurately captured its hysteretic behavior and deformation patterns. Compared to the SCRSF-CBU, the SCRSF-CMU exhibited superior rocking deformation capacity, post-yield stiffness, and hysteretic energy dissipation. Under MCE excitation, both SCRSF-CMU and SCRSF-CBU showed uniform inter-story drift distribution with minimal residual deformation, creating a satisfactory condition for the post-earthquake repair work if necessary. The high post-yield stiffness of the SCRSF-CMU was more effective in reducing both maximum and residual displacements. Endurance time analysis revealed that SCRSF-CMU and SCRSF-CBU exhibited relatively uniform inter-story drift distribution under SLE, DBE, and MCE earthquakes. Under FE excitation, the inter-story drift ratio of both structures were nearly identical; however, under DBE and MCE excitations, the maximum roof drift ratio and inter-story drift ratio of the SCRSF-CBU were larger, indicating that the SCRSF-CBU had higher deformation demands than the SCRSF-CMU.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109065"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-centering rocking steel frame with column mid-height uplift: Experimental and numerical investigation\",\"authors\":\"Yan Guo ,&nbsp;Ming Lian ,&nbsp;Yuhao Zhou ,&nbsp;Mingzhou Su\",\"doi\":\"10.1016/j.soildyn.2024.109065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a self-centering rocking steel frame with column mid-height uplift (SCRSF-CMU) that exhibits high post-yield stiffness and energy dissipation capacity. The hysteretic performance of the SCRSF-CMU was investigated through cyclic loading tests. A numerical model of the SCRSF-CMU was established and validated against experimental results. Subsequently, the seismic performance of the SCRSF-CMU was compared with that of the self-centering rocking steel frame with column base uplift (SCRSF-CBU) using nonlinear time history analysis. Finally, the seismic responses of the SCRSF-CMU and SCRSF-CBU under varying earthquake intensities were analyzed using the endurance time analysis. The results indicate that the designed SCRSF-CMU demonstrates excellent lateral force resistance, energy dissipation, and self-centering capabilities. The rocking effect and the restoring force of the post-tensioned steel strands effectively controlled the residual lateral displacement of the specimens. The multi-scale numerical model of the SCRSF-CMU accurately captured its hysteretic behavior and deformation patterns. Compared to the SCRSF-CBU, the SCRSF-CMU exhibited superior rocking deformation capacity, post-yield stiffness, and hysteretic energy dissipation. Under MCE excitation, both SCRSF-CMU and SCRSF-CBU showed uniform inter-story drift distribution with minimal residual deformation, creating a satisfactory condition for the post-earthquake repair work if necessary. The high post-yield stiffness of the SCRSF-CMU was more effective in reducing both maximum and residual displacements. Endurance time analysis revealed that SCRSF-CMU and SCRSF-CBU exhibited relatively uniform inter-story drift distribution under SLE, DBE, and MCE earthquakes. Under FE excitation, the inter-story drift ratio of both structures were nearly identical; however, under DBE and MCE excitations, the maximum roof drift ratio and inter-story drift ratio of the SCRSF-CBU were larger, indicating that the SCRSF-CBU had higher deformation demands than the SCRSF-CMU.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"188 \",\"pages\":\"Article 109065\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124006171\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124006171","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种具有支柱中高上移功能的自定心摇摆钢框架(SCRSF-CMU),该框架具有较高的屈服后刚度和消能能力。通过循环加载试验研究了 SCRSF-CMU 的滞后性能。建立了 SCRSF-CMU 的数值模型,并根据实验结果进行了验证。随后,利用非线性时间历程分析,将 SCRSF-CMU 的抗震性能与柱基上移自定心摇摆钢框架(SCRSF-CBU)的抗震性能进行了比较。最后,利用耐久时间分析法分析了 SCRSF-CMU 和 SCRSF-CBU 在不同地震烈度下的地震响应。结果表明,设计的 SCRSF-CMU 具有出色的抗侧向力、消能和自定中心能力。后张法钢绞线的摇晃效应和恢复力有效地控制了试件的残余侧向位移。SCRSF-CMU 的多尺度数值模型准确捕捉了其滞后行为和变形模式。与 SCRSF-CBU 相比,SCRSF-CMU 在摇摆变形能力、屈服后刚度和滞回消能方面都表现出更优越的性能。在 MCE 激振下,SCRSF-CMU 和 SCRSF-CBU 的层间漂移分布均匀,残余变形极小,为必要的震后修复工作创造了有利条件。SCRSF-CMU 的后屈服刚度高,能更有效地减少最大位移和残余位移。耐震时间分析表明,在 SLE、DBE 和 MCE 地震中,SCRSF-CMU 和 SCRSF-CBU 的层间漂移分布相对均匀。在 FE 地震激励下,两种结构的层间漂移比几乎相同;但在 DBE 和 MCE 地震激励下,SCRSF-CBU 的最大屋顶漂移比和层间漂移比更大,表明 SCRSF-CBU 比 SCRSF-CMU 有更高的变形要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-centering rocking steel frame with column mid-height uplift: Experimental and numerical investigation
This paper proposes a self-centering rocking steel frame with column mid-height uplift (SCRSF-CMU) that exhibits high post-yield stiffness and energy dissipation capacity. The hysteretic performance of the SCRSF-CMU was investigated through cyclic loading tests. A numerical model of the SCRSF-CMU was established and validated against experimental results. Subsequently, the seismic performance of the SCRSF-CMU was compared with that of the self-centering rocking steel frame with column base uplift (SCRSF-CBU) using nonlinear time history analysis. Finally, the seismic responses of the SCRSF-CMU and SCRSF-CBU under varying earthquake intensities were analyzed using the endurance time analysis. The results indicate that the designed SCRSF-CMU demonstrates excellent lateral force resistance, energy dissipation, and self-centering capabilities. The rocking effect and the restoring force of the post-tensioned steel strands effectively controlled the residual lateral displacement of the specimens. The multi-scale numerical model of the SCRSF-CMU accurately captured its hysteretic behavior and deformation patterns. Compared to the SCRSF-CBU, the SCRSF-CMU exhibited superior rocking deformation capacity, post-yield stiffness, and hysteretic energy dissipation. Under MCE excitation, both SCRSF-CMU and SCRSF-CBU showed uniform inter-story drift distribution with minimal residual deformation, creating a satisfactory condition for the post-earthquake repair work if necessary. The high post-yield stiffness of the SCRSF-CMU was more effective in reducing both maximum and residual displacements. Endurance time analysis revealed that SCRSF-CMU and SCRSF-CBU exhibited relatively uniform inter-story drift distribution under SLE, DBE, and MCE earthquakes. Under FE excitation, the inter-story drift ratio of both structures were nearly identical; however, under DBE and MCE excitations, the maximum roof drift ratio and inter-story drift ratio of the SCRSF-CBU were larger, indicating that the SCRSF-CBU had higher deformation demands than the SCRSF-CMU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信