木卫三查普曼-费拉罗磁场的三维建模及其在地表下海洋感应中的作用

IF 2.5 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Nawapat Kaweeyanun , Adam Masters
{"title":"木卫三查普曼-费拉罗磁场的三维建模及其在地表下海洋感应中的作用","authors":"Nawapat Kaweeyanun ,&nbsp;Adam Masters","doi":"10.1016/j.icarus.2024.116356","DOIUrl":null,"url":null,"abstract":"<div><div>In April 2023, the Jupiter Icy Moons Explorer (Juice) began its journey to orbit Jupiter’s largest and only magnetic moon, Ganymede. Part of the mission’s objectives aim to verify existence of the moon’s subsurface ocean and determine its structure through its induced response to external excitation by periodically varying magnetic field. Known contributions to the excitation are those from Jupiter’s dipole (at synodic period) and quadrupole (at half-synodic period) variations, and Ganymede’s inclined eccentric orbit around Jupiter (at orbital period). We propose that Ganymede’s magnetopause, where the Chapman–Ferraro (C–F) magnetic field arises from local currents, also contributes to subsurface ocean induction. This article introduces the first three-dimensional model of the C–F field and its outputs at Ganymede’s subsurface ocean and larger magnetosphere. The field is shown to be non-uniform — strongest near upstream Ganymede’s subflow region and gradually weakening away from it. Magnetopause asymmetry due to the Jovian guide field results in largely synodic variation of the C–F field, with exceptions near Ganymede’s equator and subflow meridian where asymmetry effects are minimal and the variations are half-synodic. The C–F field amplitude is of general order <span><math><mrow><mo>∼</mo><mn>50</mn></mrow></math></span> nT, which is significant relative to excitation from the Jovian field. Comparisons to Galileo data and magnetohydrodynamic simulation results suggest the model is useful, therefore the magnetopause effects must be considered in future induction modeling of Ganymede’s subsurface ocean ahead of the Juice mission.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"426 ","pages":"Article 116356"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional modeling of Ganymede’s Chapman–Ferraro magnetic field and its role in subsurface ocean induction\",\"authors\":\"Nawapat Kaweeyanun ,&nbsp;Adam Masters\",\"doi\":\"10.1016/j.icarus.2024.116356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In April 2023, the Jupiter Icy Moons Explorer (Juice) began its journey to orbit Jupiter’s largest and only magnetic moon, Ganymede. Part of the mission’s objectives aim to verify existence of the moon’s subsurface ocean and determine its structure through its induced response to external excitation by periodically varying magnetic field. Known contributions to the excitation are those from Jupiter’s dipole (at synodic period) and quadrupole (at half-synodic period) variations, and Ganymede’s inclined eccentric orbit around Jupiter (at orbital period). We propose that Ganymede’s magnetopause, where the Chapman–Ferraro (C–F) magnetic field arises from local currents, also contributes to subsurface ocean induction. This article introduces the first three-dimensional model of the C–F field and its outputs at Ganymede’s subsurface ocean and larger magnetosphere. The field is shown to be non-uniform — strongest near upstream Ganymede’s subflow region and gradually weakening away from it. Magnetopause asymmetry due to the Jovian guide field results in largely synodic variation of the C–F field, with exceptions near Ganymede’s equator and subflow meridian where asymmetry effects are minimal and the variations are half-synodic. The C–F field amplitude is of general order <span><math><mrow><mo>∼</mo><mn>50</mn></mrow></math></span> nT, which is significant relative to excitation from the Jovian field. Comparisons to Galileo data and magnetohydrodynamic simulation results suggest the model is useful, therefore the magnetopause effects must be considered in future induction modeling of Ganymede’s subsurface ocean ahead of the Juice mission.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"426 \",\"pages\":\"Article 116356\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524004160\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004160","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

2023 年 4 月,木星冰月探测器(Juice)开始了环绕木星最大也是唯一的磁性卫星-- 木卫三(Ganymede)的旅程。此次任务的部分目标是验证该卫星是否存在地表下海洋,并通过其对周期性变化磁场的外部激励的感应反应确定其结构。已知的激励作用来自木星的偶极(同步周期)和四极(半同步周期)变化,以及木卫三围绕木星的倾斜偏心轨道(轨道周期)。我们提出,木卫三的磁极顶(Chapman-Ferraro(C-F)磁场产生于当地海流)也是造成地表下海洋感应的原因。本文首次介绍了 C-F 磁场的三维模型及其在木卫三次表层海洋和较大磁层的输出。研究表明,该磁场是不均匀的--在甘耶米德子流区上游附近最强,远离子流区后逐渐减弱。木卫二导磁场造成的磁极不对称导致了 C-F 磁场的大体同步变化,但在甘耶米德赤道和亚气流子午线附近例外,那里的不对称影响最小,变化为半同步。C-F场的振幅一般为50 nT,相对于来自木卫二场的激励来说是相当大的。与伽利略数据和磁流体动力学模拟结果的比较表明,该模型是有用的,因此,在 "朱伊斯 "任务之前,在对甘耶米底层海洋进行感应建模时,必须考虑磁极效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional modeling of Ganymede’s Chapman–Ferraro magnetic field and its role in subsurface ocean induction
In April 2023, the Jupiter Icy Moons Explorer (Juice) began its journey to orbit Jupiter’s largest and only magnetic moon, Ganymede. Part of the mission’s objectives aim to verify existence of the moon’s subsurface ocean and determine its structure through its induced response to external excitation by periodically varying magnetic field. Known contributions to the excitation are those from Jupiter’s dipole (at synodic period) and quadrupole (at half-synodic period) variations, and Ganymede’s inclined eccentric orbit around Jupiter (at orbital period). We propose that Ganymede’s magnetopause, where the Chapman–Ferraro (C–F) magnetic field arises from local currents, also contributes to subsurface ocean induction. This article introduces the first three-dimensional model of the C–F field and its outputs at Ganymede’s subsurface ocean and larger magnetosphere. The field is shown to be non-uniform — strongest near upstream Ganymede’s subflow region and gradually weakening away from it. Magnetopause asymmetry due to the Jovian guide field results in largely synodic variation of the C–F field, with exceptions near Ganymede’s equator and subflow meridian where asymmetry effects are minimal and the variations are half-synodic. The C–F field amplitude is of general order 50 nT, which is significant relative to excitation from the Jovian field. Comparisons to Galileo data and magnetohydrodynamic simulation results suggest the model is useful, therefore the magnetopause effects must be considered in future induction modeling of Ganymede’s subsurface ocean ahead of the Juice mission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信