用于拦阻索拉伸和弯曲分析的先进有限元建模方法

IF 3.4 3区 工程技术 Q1 MECHANICS
Long Li , Yiming Peng , Yifeng Wang , Xiaohui Wei , Hong Nie
{"title":"用于拦阻索拉伸和弯曲分析的先进有限元建模方法","authors":"Long Li ,&nbsp;Yiming Peng ,&nbsp;Yifeng Wang ,&nbsp;Xiaohui Wei ,&nbsp;Hong Nie","doi":"10.1016/j.ijsolstr.2024.113126","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the gap in understanding the dynamic bending behavior of multi-layer twisted steel cable, pivotal in various industrial applications such as naval aircraft arresting systems. Utilizing advanced finite element modeling, the research explores the mechanical responses of these cables under macroscopic bending scenarios. By integrating beam elements and connectors within the finite element framework, the study simulates complex inter-strand interactions under various loading conditions. Results indicate that this method significantly enhances the prediction accuracy of the cables’ mechanical properties, thus offering substantial improvements in design and performance analysis of arresting gear systems. This study’s value lies in its potential to refine mechanical modeling of complex cable systems, thereby optimizing operational efficiency and safety in engineering applications.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"306 ","pages":"Article 113126"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced finite element modeling methods for tensile and bending analysis of arresting gear cables\",\"authors\":\"Long Li ,&nbsp;Yiming Peng ,&nbsp;Yifeng Wang ,&nbsp;Xiaohui Wei ,&nbsp;Hong Nie\",\"doi\":\"10.1016/j.ijsolstr.2024.113126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the gap in understanding the dynamic bending behavior of multi-layer twisted steel cable, pivotal in various industrial applications such as naval aircraft arresting systems. Utilizing advanced finite element modeling, the research explores the mechanical responses of these cables under macroscopic bending scenarios. By integrating beam elements and connectors within the finite element framework, the study simulates complex inter-strand interactions under various loading conditions. Results indicate that this method significantly enhances the prediction accuracy of the cables’ mechanical properties, thus offering substantial improvements in design and performance analysis of arresting gear systems. This study’s value lies in its potential to refine mechanical modeling of complex cable systems, thereby optimizing operational efficiency and safety in engineering applications.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"306 \",\"pages\":\"Article 113126\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324004852\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004852","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究填补了对多层扭转钢缆动态弯曲行为理解方面的空白,多层扭转钢缆在各种工业应用(如舰载机拦阻系统)中具有举足轻重的地位。研究利用先进的有限元建模,探讨了这些钢缆在宏观弯曲情况下的机械响应。通过在有限元框架内集成梁元素和连接器,该研究模拟了各种加载条件下复杂的链间相互作用。结果表明,这种方法大大提高了缆索机械性能的预测精度,从而极大地改进了捕捉装置系统的设计和性能分析。这项研究的价值在于它有可能完善复杂缆索系统的机械建模,从而优化工程应用中的运行效率和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced finite element modeling methods for tensile and bending analysis of arresting gear cables
This study addresses the gap in understanding the dynamic bending behavior of multi-layer twisted steel cable, pivotal in various industrial applications such as naval aircraft arresting systems. Utilizing advanced finite element modeling, the research explores the mechanical responses of these cables under macroscopic bending scenarios. By integrating beam elements and connectors within the finite element framework, the study simulates complex inter-strand interactions under various loading conditions. Results indicate that this method significantly enhances the prediction accuracy of the cables’ mechanical properties, thus offering substantial improvements in design and performance analysis of arresting gear systems. This study’s value lies in its potential to refine mechanical modeling of complex cable systems, thereby optimizing operational efficiency and safety in engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信