通过酸预处理增强阳离子释放,在玄武岩中进行千兆吨级二氧化碳地质封存

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS
Qin Zhang , Adedapo N. Awolayo , Patrick R. Phelps , Shafik Vadsariya , Christiaan T. Laureijs , Matthew D. Eisaman , Benjamin M. Tutolo
{"title":"通过酸预处理增强阳离子释放,在玄武岩中进行千兆吨级二氧化碳地质封存","authors":"Qin Zhang ,&nbsp;Adedapo N. Awolayo ,&nbsp;Patrick R. Phelps ,&nbsp;Shafik Vadsariya ,&nbsp;Christiaan T. Laureijs ,&nbsp;Matthew D. Eisaman ,&nbsp;Benjamin M. Tutolo","doi":"10.1016/j.ijggc.2024.104266","DOIUrl":null,"url":null,"abstract":"<div><div>Basalt-based CO<sub>2</sub> mineralization offers gigaton-scale capacity for sequestering anthropogenic CO<sub>2</sub>, but it faces challenges such as low cation productivity and formation of pore-clogging clays. A potential solution is to treat the basalt with aqueous acids such as HCl, a by-product of some electrochemical CO<sub>2</sub> removal processes. To date, our understanding of basalt-acid interactions is limited to extrapolations from higher pH environments, and therefore little is known about the mechanisms of the reaction at acidic conditions. To address this knowledge gap, far-from-equilibrium dissolution rates of basaltic glass and crystalline basalt were measured in mixed flow reactors at pH 0 to 9, and temperatures from 23 to 60 °C, with a specific focus on the low-pH region. Measured geometric surface area-normalized dissolution rates can be described according to: <span><span><span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>5</mn><mo>.</mo><mn>6</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></msup><mi>⋅</mi><mo>exp</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>42</mn><mo>.</mo><mn>2</mn><mo>±</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow><mrow><mi>R</mi></mrow></mfrac></mrow></mfenced><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></mfenced><mi>⋅</mi><msubsup><mrow><mi>a</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>81</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>02</mn><mo>)</mo></mrow></mrow></msubsup><mo>+</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>10</mn><mo>.</mo><mn>9</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>)</mo></mrow></mrow></msup><mi>⋅</mi><mo>exp</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>32</mn><mo>.</mo><mn>5</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow><mrow><mi>R</mi></mrow></mfrac></mrow></mfenced><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></mfenced><mi>⋅</mi><msubsup><mrow><mi>a</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>15</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>)</mo></mrow></mrow></msubsup></mrow></math></span></span></span> where <span><math><mi>k</mi></math></span> is the rate constant (mol<!--> <!-->m<sup>−2</sup> <!-->s<sup>−1</sup>) at any temperature <span><math><mi>T</mi></math></span> (Kelvin) and <span><math><msup><mrow><mtext>H</mtext></mrow><mrow><mo>+</mo></mrow></msup></math></span> activity (<span><math><msub><mrow><mi>a</mi></mrow><mrow><msup><mrow><mtext>H</mtext></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span>), <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is the reference temperature (298.15<!--> <!-->K), and <span><math><mi>R</mi></math></span> is the ideal gas constant (8.314 <span><math><mo>×</mo></math></span> 10<sup>-3</sup> <!-->kJ<!--> <!-->mol<sup>−1</sup> <!-->K<sup>−1</sup>). The combined results of kinetic experiments and geochemical modeling indicate that acid reaction with basalt yield orders of magnitude faster cation release rates, effectively neutralizes fluid pH, and limits clay formation by limiting Si release into the system.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104266"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt\",\"authors\":\"Qin Zhang ,&nbsp;Adedapo N. Awolayo ,&nbsp;Patrick R. Phelps ,&nbsp;Shafik Vadsariya ,&nbsp;Christiaan T. Laureijs ,&nbsp;Matthew D. Eisaman ,&nbsp;Benjamin M. Tutolo\",\"doi\":\"10.1016/j.ijggc.2024.104266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Basalt-based CO<sub>2</sub> mineralization offers gigaton-scale capacity for sequestering anthropogenic CO<sub>2</sub>, but it faces challenges such as low cation productivity and formation of pore-clogging clays. A potential solution is to treat the basalt with aqueous acids such as HCl, a by-product of some electrochemical CO<sub>2</sub> removal processes. To date, our understanding of basalt-acid interactions is limited to extrapolations from higher pH environments, and therefore little is known about the mechanisms of the reaction at acidic conditions. To address this knowledge gap, far-from-equilibrium dissolution rates of basaltic glass and crystalline basalt were measured in mixed flow reactors at pH 0 to 9, and temperatures from 23 to 60 °C, with a specific focus on the low-pH region. Measured geometric surface area-normalized dissolution rates can be described according to: <span><span><span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>5</mn><mo>.</mo><mn>6</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></msup><mi>⋅</mi><mo>exp</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>42</mn><mo>.</mo><mn>2</mn><mo>±</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow><mrow><mi>R</mi></mrow></mfrac></mrow></mfenced><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></mfenced><mi>⋅</mi><msubsup><mrow><mi>a</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>81</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>02</mn><mo>)</mo></mrow></mrow></msubsup><mo>+</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>10</mn><mo>.</mo><mn>9</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>)</mo></mrow></mrow></msup><mi>⋅</mi><mo>exp</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>32</mn><mo>.</mo><mn>5</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow><mrow><mi>R</mi></mrow></mfrac></mrow></mfenced><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></mfenced><mi>⋅</mi><msubsup><mrow><mi>a</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>15</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>)</mo></mrow></mrow></msubsup></mrow></math></span></span></span> where <span><math><mi>k</mi></math></span> is the rate constant (mol<!--> <!-->m<sup>−2</sup> <!-->s<sup>−1</sup>) at any temperature <span><math><mi>T</mi></math></span> (Kelvin) and <span><math><msup><mrow><mtext>H</mtext></mrow><mrow><mo>+</mo></mrow></msup></math></span> activity (<span><math><msub><mrow><mi>a</mi></mrow><mrow><msup><mrow><mtext>H</mtext></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span>), <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is the reference temperature (298.15<!--> <!-->K), and <span><math><mi>R</mi></math></span> is the ideal gas constant (8.314 <span><math><mo>×</mo></math></span> 10<sup>-3</sup> <!-->kJ<!--> <!-->mol<sup>−1</sup> <!-->K<sup>−1</sup>). The combined results of kinetic experiments and geochemical modeling indicate that acid reaction with basalt yield orders of magnitude faster cation release rates, effectively neutralizes fluid pH, and limits clay formation by limiting Si release into the system.</div></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"139 \",\"pages\":\"Article 104266\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583624002093\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002093","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

以玄武岩为基础的二氧化碳矿化可提供千兆吨级的人为二氧化碳封存能力,但它面临着阳离子生产力低和形成孔隙堵塞粘土等挑战。一个潜在的解决方案是用盐酸等水酸处理玄武岩,盐酸是某些电化学二氧化碳去除过程的副产品。迄今为止,我们对玄武岩-酸相互作用的了解仅限于从 pH 值较高的环境中推断,因此对酸性条件下的反应机制知之甚少。为了填补这一知识空白,我们在 pH 值为 0 至 9、温度为 23 至 60 ℃ 的混流反应器中测量了玄武岩玻璃和结晶玄武岩的远平衡溶解速率,重点是低 pH 值区域。测得的几何表面积归一化溶解速率可根据以下公式描述:k=10-(5.6±0.5)⋅exp-42.2±2.0R⋅1T-1Tr⋅aH+(0.81±0.02)+10-(10.9±0.3)⋅exp-32.5±1.1R⋅1T-1Tr⋅aH+-(0. 15±0.01)。15±0.01) 其中,k 是任意温度 T(开尔文)和 H+ 活性(aH+)下的速率常数(mol m-2 s-1),Tr 是参考温度(298.15 K),R 是理想气体常数(8.314 × 10-3 kJ mol-1 K-1)。动力学实验和地球化学建模的综合结果表明,酸与玄武岩反应产生的阳离子释放速度要快上几个数量级,可有效中和流体 pH 值,并通过限制硅在系统中的释放来限制粘土的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt

Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt
Basalt-based CO2 mineralization offers gigaton-scale capacity for sequestering anthropogenic CO2, but it faces challenges such as low cation productivity and formation of pore-clogging clays. A potential solution is to treat the basalt with aqueous acids such as HCl, a by-product of some electrochemical CO2 removal processes. To date, our understanding of basalt-acid interactions is limited to extrapolations from higher pH environments, and therefore little is known about the mechanisms of the reaction at acidic conditions. To address this knowledge gap, far-from-equilibrium dissolution rates of basaltic glass and crystalline basalt were measured in mixed flow reactors at pH 0 to 9, and temperatures from 23 to 60 °C, with a specific focus on the low-pH region. Measured geometric surface area-normalized dissolution rates can be described according to: k=10(5.6±0.5)exp42.2±2.0R1T1TraH+(0.81±0.02)+10(10.9±0.3)exp32.5±1.1R1T1TraH+(0.15±0.01) where k is the rate constant (mol m−2 s−1) at any temperature T (Kelvin) and H+ activity (aH+), Tr is the reference temperature (298.15 K), and R is the ideal gas constant (8.314 × 10-3 kJ mol−1 K−1). The combined results of kinetic experiments and geochemical modeling indicate that acid reaction with basalt yield orders of magnitude faster cation release rates, effectively neutralizes fluid pH, and limits clay formation by limiting Si release into the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信