{"title":"通过微量添加聚偏二氟乙烯改善聚丙烯的高压绝缘性能:实验和模拟研究","authors":"","doi":"10.1016/j.compscitech.2024.110939","DOIUrl":null,"url":null,"abstract":"<div><div>Various additives ranging from inorganic nanoparticles to organic additives have been suggested to improve the insulation performance of polymeric materials for high-voltage engineering applications. Herein, a simple method for doping fluorine into a polypropylene (PP) matrix was presented by melt-blending of isotactic PP (iPP) with a small amount of polyvinylidene fluoride (PVDF) as a thermoplastic voltage stabilizer (TVS). During melt-mixing, the PVDF TVS, which is immiscible with PP, is gradually split into smaller domains within the iPP matrix and finely distributed, especially at a low PVDF content. The direct current (DC) breakdown strength (BDS) values of the PVDF-doped iPP increased by 110 % and 149 % at 25 and 110 °C, respectively, compared to those of the pristine PP, while its dielectric permittivity and loss tangent values remained nearly similar to those of iPP at wide temperature between 25 and 140 °C and frequency range between 1 Hz and 10 MHz. Quantum chemical simulation results reveal that a small amount of PVDF with high dipole moment introduces deep trap sites within the polymer matrix, which contribute for increasing BDS of iPP. Also, the PP with a small amount of PVDF dopants below 1.0 phr exhibited no any decrease in the tensile strength and elongation at break values. Therefore, the PVDF-doped iPP is anticipated as a potential candidate as high-performance high-voltage insulation materials for next-generation insulation applications.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the high-voltage insulation properties of polypropylene by introducing trace addition of polyvinylidene fluoride: An experimental and simulation study\",\"authors\":\"\",\"doi\":\"10.1016/j.compscitech.2024.110939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Various additives ranging from inorganic nanoparticles to organic additives have been suggested to improve the insulation performance of polymeric materials for high-voltage engineering applications. Herein, a simple method for doping fluorine into a polypropylene (PP) matrix was presented by melt-blending of isotactic PP (iPP) with a small amount of polyvinylidene fluoride (PVDF) as a thermoplastic voltage stabilizer (TVS). During melt-mixing, the PVDF TVS, which is immiscible with PP, is gradually split into smaller domains within the iPP matrix and finely distributed, especially at a low PVDF content. The direct current (DC) breakdown strength (BDS) values of the PVDF-doped iPP increased by 110 % and 149 % at 25 and 110 °C, respectively, compared to those of the pristine PP, while its dielectric permittivity and loss tangent values remained nearly similar to those of iPP at wide temperature between 25 and 140 °C and frequency range between 1 Hz and 10 MHz. Quantum chemical simulation results reveal that a small amount of PVDF with high dipole moment introduces deep trap sites within the polymer matrix, which contribute for increasing BDS of iPP. Also, the PP with a small amount of PVDF dopants below 1.0 phr exhibited no any decrease in the tensile strength and elongation at break values. Therefore, the PVDF-doped iPP is anticipated as a potential candidate as high-performance high-voltage insulation materials for next-generation insulation applications.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005098\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005098","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Improving the high-voltage insulation properties of polypropylene by introducing trace addition of polyvinylidene fluoride: An experimental and simulation study
Various additives ranging from inorganic nanoparticles to organic additives have been suggested to improve the insulation performance of polymeric materials for high-voltage engineering applications. Herein, a simple method for doping fluorine into a polypropylene (PP) matrix was presented by melt-blending of isotactic PP (iPP) with a small amount of polyvinylidene fluoride (PVDF) as a thermoplastic voltage stabilizer (TVS). During melt-mixing, the PVDF TVS, which is immiscible with PP, is gradually split into smaller domains within the iPP matrix and finely distributed, especially at a low PVDF content. The direct current (DC) breakdown strength (BDS) values of the PVDF-doped iPP increased by 110 % and 149 % at 25 and 110 °C, respectively, compared to those of the pristine PP, while its dielectric permittivity and loss tangent values remained nearly similar to those of iPP at wide temperature between 25 and 140 °C and frequency range between 1 Hz and 10 MHz. Quantum chemical simulation results reveal that a small amount of PVDF with high dipole moment introduces deep trap sites within the polymer matrix, which contribute for increasing BDS of iPP. Also, the PP with a small amount of PVDF dopants below 1.0 phr exhibited no any decrease in the tensile strength and elongation at break values. Therefore, the PVDF-doped iPP is anticipated as a potential candidate as high-performance high-voltage insulation materials for next-generation insulation applications.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.