Josefa Caballero , Hanna Okrasińska-Płociniczak , Łukasz Płociniczak , Kishin Sadarangani
{"title":"行为科学中出现的函数方程的搭配法","authors":"Josefa Caballero , Hanna Okrasińska-Płociniczak , Łukasz Płociniczak , Kishin Sadarangani","doi":"10.1016/j.cam.2024.116343","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a nonlocal functional equation that is a generalization of the mathematical model used in behavioral sciences. The equation is built upon an operator that introduces a convex combination and a nonlinear mixing of the function arguments. We show that, provided some growth conditions of the coefficients, there exists a unique solution in the natural Lipschitz space. Furthermore, we prove that the regularity of the solution is inherited from the smoothness properties of the coefficients.</div><div>As a natural numerical method to solve the general case, we consider the collocation scheme of piecewise linear functions. We prove that the method converges with the error bounded by the error of projecting the Lipschitz function onto the piecewise linear polynomial space. Moreover, provided sufficient regularity of the coefficients, the scheme is of the second order measured in the supremum norm.</div><div>A series of numerical experiments verify the proved claims and show that the implementation is computationally cheap and exceeds the frequently used Picard iteration by orders of magnitude in the calculation time.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"458 ","pages":"Article 116343"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collocation method for a functional equation arising in behavioral sciences\",\"authors\":\"Josefa Caballero , Hanna Okrasińska-Płociniczak , Łukasz Płociniczak , Kishin Sadarangani\",\"doi\":\"10.1016/j.cam.2024.116343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a nonlocal functional equation that is a generalization of the mathematical model used in behavioral sciences. The equation is built upon an operator that introduces a convex combination and a nonlinear mixing of the function arguments. We show that, provided some growth conditions of the coefficients, there exists a unique solution in the natural Lipschitz space. Furthermore, we prove that the regularity of the solution is inherited from the smoothness properties of the coefficients.</div><div>As a natural numerical method to solve the general case, we consider the collocation scheme of piecewise linear functions. We prove that the method converges with the error bounded by the error of projecting the Lipschitz function onto the piecewise linear polynomial space. Moreover, provided sufficient regularity of the coefficients, the scheme is of the second order measured in the supremum norm.</div><div>A series of numerical experiments verify the proved claims and show that the implementation is computationally cheap and exceeds the frequently used Picard iteration by orders of magnitude in the calculation time.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 116343\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005910\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005910","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Collocation method for a functional equation arising in behavioral sciences
We consider a nonlocal functional equation that is a generalization of the mathematical model used in behavioral sciences. The equation is built upon an operator that introduces a convex combination and a nonlinear mixing of the function arguments. We show that, provided some growth conditions of the coefficients, there exists a unique solution in the natural Lipschitz space. Furthermore, we prove that the regularity of the solution is inherited from the smoothness properties of the coefficients.
As a natural numerical method to solve the general case, we consider the collocation scheme of piecewise linear functions. We prove that the method converges with the error bounded by the error of projecting the Lipschitz function onto the piecewise linear polynomial space. Moreover, provided sufficient regularity of the coefficients, the scheme is of the second order measured in the supremum norm.
A series of numerical experiments verify the proved claims and show that the implementation is computationally cheap and exceeds the frequently used Picard iteration by orders of magnitude in the calculation time.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.