{"title":"一类变分不等式的一阶动力系统及其离散化","authors":"Nguyen Buong","doi":"10.1016/j.cam.2024.116341","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the variational inequality problem over the set of common fixed points of a Lipschitz continuous pseudo-contraction and a finite family of strictly pseudo-contractive operators on a real Hilbert space. We introduce a first order dynamical system in accordance with the Lavrentiev regularization method. The existence and strong convergence with a discretized variant of the trajectory of the dynamical system are proved under some mild conditions. Applications to solving the convex constrained monotone equations and to the LASSO problem with numerical experiments are given for validating our results.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"458 ","pages":"Article 116341"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A first order dynamical system and its discretization for a class of variational inequalities\",\"authors\":\"Nguyen Buong\",\"doi\":\"10.1016/j.cam.2024.116341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the variational inequality problem over the set of common fixed points of a Lipschitz continuous pseudo-contraction and a finite family of strictly pseudo-contractive operators on a real Hilbert space. We introduce a first order dynamical system in accordance with the Lavrentiev regularization method. The existence and strong convergence with a discretized variant of the trajectory of the dynamical system are proved under some mild conditions. Applications to solving the convex constrained monotone equations and to the LASSO problem with numerical experiments are given for validating our results.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 116341\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005892\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005892","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A first order dynamical system and its discretization for a class of variational inequalities
In this paper, we study the variational inequality problem over the set of common fixed points of a Lipschitz continuous pseudo-contraction and a finite family of strictly pseudo-contractive operators on a real Hilbert space. We introduce a first order dynamical system in accordance with the Lavrentiev regularization method. The existence and strong convergence with a discretized variant of the trajectory of the dynamical system are proved under some mild conditions. Applications to solving the convex constrained monotone equations and to the LASSO problem with numerical experiments are given for validating our results.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.