立普齐兹框架下的定量计算

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Yurun Gu , Clément Rey
{"title":"立普齐兹框架下的定量计算","authors":"Yurun Gu ,&nbsp;Clément Rey","doi":"10.1016/j.cam.2024.116344","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we focus on computing the quantiles of a random variable <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>X</mi></math></span> is a <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></math></span>-valued random variable, <span><math><mrow><mi>d</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, and <span><math><mrow><mi>f</mi><mo>:</mo><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of <span><math><mi>X</mi></math></span> is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> at a given level <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. With a fixed budget of <span><math><mi>N</mi></math></span> function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for <span><math><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow></math></span> (<span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>ρ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>) and a polynomial deterministic convergence rate for <span><math><mrow><mi>d</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> (<span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span>) and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of <span><math><mi>f</mi></math></span> is known or unknown.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"458 ","pages":"Article 116344"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic computation of quantiles in a Lipschitz framework\",\"authors\":\"Yurun Gu ,&nbsp;Clément Rey\",\"doi\":\"10.1016/j.cam.2024.116344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we focus on computing the quantiles of a random variable <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>X</mi></math></span> is a <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></math></span>-valued random variable, <span><math><mrow><mi>d</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, and <span><math><mrow><mi>f</mi><mo>:</mo><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of <span><math><mi>X</mi></math></span> is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> at a given level <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. With a fixed budget of <span><math><mi>N</mi></math></span> function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for <span><math><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow></math></span> (<span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>ρ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>) and a polynomial deterministic convergence rate for <span><math><mrow><mi>d</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> (<span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span>) and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of <span><math><mi>f</mi></math></span> is known or unknown.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 116344\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005922\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005922","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们专注于计算随机变量 f(X) 的量化值,其中 X 是一个 [0,1]d 值随机变量,d∈N∗,f:[0,1]d→R 是一个确定的 Lipschitz 函数。我们尤其感兴趣的是,在假定 X 的规律已知的情况下,单次函数评估的成本很高。在这种情况下,我们提出了一种确定性算法,用于计算给定水平 α∈(0,1)下 f(X) 量值的确定性下限和上限。在 N 次函数调用的固定预算下,我们证明了我们的算法在 d=1 时实现了指数确定性收敛率(O(ρN),ρ∈(0,1)),在 d>1 时实现了多项式确定性收敛率(O(N-1d-1)),并证明了这些收敛率的最优性。此外,我们还根据 f 的 Lipschitz 常数是已知还是未知,设计了两种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic computation of quantiles in a Lipschitz framework
In this article, we focus on computing the quantiles of a random variable f(X), where X is a [0,1]d-valued random variable, dN, and f:[0,1]dR is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of X is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of f(X) at a given level α(0,1). With a fixed budget of N function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for d=1 (O(ρN) with ρ(0,1)) and a polynomial deterministic convergence rate for d>1 (O(N1d1)) and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of f is known or unknown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信