{"title":"用于高温应变传感的蓝宝石光纤上的级联法布里-珀罗腔和光纤布拉格光栅","authors":"","doi":"10.1016/j.optlaseng.2024.108674","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature strain sensors are key elements for several applications. Key issues of the existing devices include the difficulties of sensor operating above 1000°C as well as the very strong thermal effect under high temperatures introducing significant bias on the strain measurement. Here we developed a cascaded Fabry-Perot cavity and fiber Bragg grating strain sensor fully integrated on sapphire fibers, permitting a sufficient temperature compensation and strain measurement up to 1150°C temperature. A three-point adhesive bonding process is proposed to greatly improve the adhesion performance, and hence the robustness of the device at high temperatures. Experimental results show that the fabricated strain sensor can achieve a measurement range of ±1000 με at temperature up to 1150°C. The experimental results show that the measurement accuracy is not more than 5% at room temperature. the measurement accuracy is significantly decreased at high temperature, and the maximum strain measurement error is 14% at 1150°C.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascaded Fabry-Perot cavity and fiber Bragg grating on sapphire fibers for high-temperature strain sensing\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-temperature strain sensors are key elements for several applications. Key issues of the existing devices include the difficulties of sensor operating above 1000°C as well as the very strong thermal effect under high temperatures introducing significant bias on the strain measurement. Here we developed a cascaded Fabry-Perot cavity and fiber Bragg grating strain sensor fully integrated on sapphire fibers, permitting a sufficient temperature compensation and strain measurement up to 1150°C temperature. A three-point adhesive bonding process is proposed to greatly improve the adhesion performance, and hence the robustness of the device at high temperatures. Experimental results show that the fabricated strain sensor can achieve a measurement range of ±1000 με at temperature up to 1150°C. The experimental results show that the measurement accuracy is not more than 5% at room temperature. the measurement accuracy is significantly decreased at high temperature, and the maximum strain measurement error is 14% at 1150°C.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624006523\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006523","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Cascaded Fabry-Perot cavity and fiber Bragg grating on sapphire fibers for high-temperature strain sensing
High-temperature strain sensors are key elements for several applications. Key issues of the existing devices include the difficulties of sensor operating above 1000°C as well as the very strong thermal effect under high temperatures introducing significant bias on the strain measurement. Here we developed a cascaded Fabry-Perot cavity and fiber Bragg grating strain sensor fully integrated on sapphire fibers, permitting a sufficient temperature compensation and strain measurement up to 1150°C temperature. A three-point adhesive bonding process is proposed to greatly improve the adhesion performance, and hence the robustness of the device at high temperatures. Experimental results show that the fabricated strain sensor can achieve a measurement range of ±1000 με at temperature up to 1150°C. The experimental results show that the measurement accuracy is not more than 5% at room temperature. the measurement accuracy is significantly decreased at high temperature, and the maximum strain measurement error is 14% at 1150°C.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques