关于周动声学

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
P.A. Martin
{"title":"关于周动声学","authors":"P.A. Martin","doi":"10.1016/j.wavemoti.2024.103429","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a nonlocal (peridynamic) version of the classical forced wave equation. This scalar three-dimensional equation contains a weight function (the “micromodulus”) and a length parameter (the “horizon”) that have to be selected. We investigate various properties (the locality limit as the horizon shrinks, plane waves and group velocity), paying attention to how these properties depend on the choice of the micromodulus. We solve the forced peridynamic equation in the static case (avoiding divergent integrals) and in the time-harmonic case (with a radiation condition, when needed).</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103429"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On peridynamic acoustics\",\"authors\":\"P.A. Martin\",\"doi\":\"10.1016/j.wavemoti.2024.103429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a nonlocal (peridynamic) version of the classical forced wave equation. This scalar three-dimensional equation contains a weight function (the “micromodulus”) and a length parameter (the “horizon”) that have to be selected. We investigate various properties (the locality limit as the horizon shrinks, plane waves and group velocity), paying attention to how these properties depend on the choice of the micromodulus. We solve the forced peridynamic equation in the static case (avoiding divergent integrals) and in the time-harmonic case (with a radiation condition, when needed).</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"132 \",\"pages\":\"Article 103429\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001598\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001598","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是经典强迫波方程的非局部(周动)版本。这个标量三维方程包含一个必须选择的权重函数("微模量")和一个长度参数("地平线")。我们研究了各种特性(地平线收缩时的位置极限、平面波和群速度),并关注了这些特性如何取决于微模量的选择。我们在静态情况下(避免发散积分)和在时谐情况下(必要时使用辐射条件)求解了受迫周流方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On peridynamic acoustics
We consider a nonlocal (peridynamic) version of the classical forced wave equation. This scalar three-dimensional equation contains a weight function (the “micromodulus”) and a length parameter (the “horizon”) that have to be selected. We investigate various properties (the locality limit as the horizon shrinks, plane waves and group velocity), paying attention to how these properties depend on the choice of the micromodulus. We solve the forced peridynamic equation in the static case (avoiding divergent integrals) and in the time-harmonic case (with a radiation condition, when needed).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信