深入分析基于 MWCNT 和石墨烯纳米流体的放电加工:调查 Inconel 825 超合金的表面完整性

IF 3.5 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Pankaj Sharma , Vishal Singh , Manoj Kumar Sinha
{"title":"深入分析基于 MWCNT 和石墨烯纳米流体的放电加工:调查 Inconel 825 超合金的表面完整性","authors":"Pankaj Sharma ,&nbsp;Vishal Singh ,&nbsp;Manoj Kumar Sinha","doi":"10.1016/j.precisioneng.2024.10.018","DOIUrl":null,"url":null,"abstract":"<div><div>The current study systematically explores the potential of nanofluids (NFs) as dielectric media in EDM to enhance the surface integrity of Inconel 825. To achieve this objective, applying nanofluids involves ensuring uniform dispersion of nanoparticles, specifically emphasising efficient heat dissipation, thereby aligning EDM processes. This investigation focuses on utilising MWCNTs NFs, graphene NFs, and hybrid NFs (maintaining a 1:1 ratio of nanoparticles) with a hydrocarbon-based EDM oil as the base fluid. This study marks a pioneering attempt to implement these NFs in the EDM process for Inconel 825. Comprehensive characterizations of NFs have been conducted before their application in the EDM process. These have included assessments of hydrodynamic diameter, zeta potential, dynamic viscosity, thermal conductivity, and breakdown voltage. A comparative analysis has been performed between the outcomes of NFs-based EDM and conventional EDM (using EDM oil). The results show that using graphene NFs, followed by MWCNTs NFs and hybrid NFs, improves thermal conductivity and stability during the EDM process. This results in an enhanced material removal rate and better surface roughness. In-depth examinations of surface irregularities, surface microcracks, recast layer thickness, and grain orientation are carried out using scanning electron microscopy and electron backscattered diffraction. Moreover, residual stress and microhardness are systematically determined to gain further insights into surface integrity. The results indicate that the comparatively higher dispersion of graphene within base dielectric fluid provided better surface integrity for ED-machined parts.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 546-558"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An in-depth analysis of MWCNTs and graphene nanofluids-based EDM: Investigating surface integrity in Inconel 825 superalloy\",\"authors\":\"Pankaj Sharma ,&nbsp;Vishal Singh ,&nbsp;Manoj Kumar Sinha\",\"doi\":\"10.1016/j.precisioneng.2024.10.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current study systematically explores the potential of nanofluids (NFs) as dielectric media in EDM to enhance the surface integrity of Inconel 825. To achieve this objective, applying nanofluids involves ensuring uniform dispersion of nanoparticles, specifically emphasising efficient heat dissipation, thereby aligning EDM processes. This investigation focuses on utilising MWCNTs NFs, graphene NFs, and hybrid NFs (maintaining a 1:1 ratio of nanoparticles) with a hydrocarbon-based EDM oil as the base fluid. This study marks a pioneering attempt to implement these NFs in the EDM process for Inconel 825. Comprehensive characterizations of NFs have been conducted before their application in the EDM process. These have included assessments of hydrodynamic diameter, zeta potential, dynamic viscosity, thermal conductivity, and breakdown voltage. A comparative analysis has been performed between the outcomes of NFs-based EDM and conventional EDM (using EDM oil). The results show that using graphene NFs, followed by MWCNTs NFs and hybrid NFs, improves thermal conductivity and stability during the EDM process. This results in an enhanced material removal rate and better surface roughness. In-depth examinations of surface irregularities, surface microcracks, recast layer thickness, and grain orientation are carried out using scanning electron microscopy and electron backscattered diffraction. Moreover, residual stress and microhardness are systematically determined to gain further insights into surface integrity. The results indicate that the comparatively higher dispersion of graphene within base dielectric fluid provided better surface integrity for ED-machined parts.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 546-558\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002459\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002459","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地探讨了纳米流体(NFs)作为电火花成形加工中的介电介质的潜力,以提高 Inconel 825 的表面完整性。为了实现这一目标,应用纳米流体需要确保纳米颗粒的均匀分散,特别强调高效散热,从而调整放电加工过程。这项研究的重点是利用 MWCNTs NFs、石墨烯 NFs 和混合 NFs(保持 1:1 的纳米粒子比例),并以碳氢化合物为基础的 EDM 油作为基础油。这项研究标志着在 Inconel 825 的放电加工过程中使用这些 NFs 的开创性尝试。在将 NFs 应用于放电加工工艺之前,已经对其进行了全面的表征。其中包括流体力学直径、Zeta 电位、动态粘度、热导率和击穿电压的评估。对基于 NFs 的放电加工和传统放电加工(使用放电加工油)的结果进行了比较分析。结果表明,使用石墨烯 NFs(其次是 MWCNTs NFs 和混合 NFs)可提高放电加工过程中的导热性和稳定性。从而提高了材料去除率和表面粗糙度。利用扫描电子显微镜和电子反向散射衍射对表面不规则性、表面微裂纹、再铸层厚度和晶粒取向进行了深入研究。此外,还系统地测定了残余应力和显微硬度,以进一步了解表面完整性。结果表明,石墨烯在基底电介质流体中的分散度相对较高,为电解加工零件提供了更好的表面完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An in-depth analysis of MWCNTs and graphene nanofluids-based EDM: Investigating surface integrity in Inconel 825 superalloy

An in-depth analysis of MWCNTs and graphene nanofluids-based EDM: Investigating surface integrity in Inconel 825 superalloy
The current study systematically explores the potential of nanofluids (NFs) as dielectric media in EDM to enhance the surface integrity of Inconel 825. To achieve this objective, applying nanofluids involves ensuring uniform dispersion of nanoparticles, specifically emphasising efficient heat dissipation, thereby aligning EDM processes. This investigation focuses on utilising MWCNTs NFs, graphene NFs, and hybrid NFs (maintaining a 1:1 ratio of nanoparticles) with a hydrocarbon-based EDM oil as the base fluid. This study marks a pioneering attempt to implement these NFs in the EDM process for Inconel 825. Comprehensive characterizations of NFs have been conducted before their application in the EDM process. These have included assessments of hydrodynamic diameter, zeta potential, dynamic viscosity, thermal conductivity, and breakdown voltage. A comparative analysis has been performed between the outcomes of NFs-based EDM and conventional EDM (using EDM oil). The results show that using graphene NFs, followed by MWCNTs NFs and hybrid NFs, improves thermal conductivity and stability during the EDM process. This results in an enhanced material removal rate and better surface roughness. In-depth examinations of surface irregularities, surface microcracks, recast layer thickness, and grain orientation are carried out using scanning electron microscopy and electron backscattered diffraction. Moreover, residual stress and microhardness are systematically determined to gain further insights into surface integrity. The results indicate that the comparatively higher dispersion of graphene within base dielectric fluid provided better surface integrity for ED-machined parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信