关于对 RKHS 中的无界函数采用重要性采样的准蒙特卡罗方法的收敛率

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Hejin Wang, Xiaoqun Wang
{"title":"关于对 RKHS 中的无界函数采用重要性采样的准蒙特卡罗方法的收敛率","authors":"Hejin Wang,&nbsp;Xiaoqun Wang","doi":"10.1016/j.aml.2024.109352","DOIUrl":null,"url":null,"abstract":"<div><div>Importance Sampling (IS), a variance reduction technique of significant efficacy in Monte Carlo (MC) simulation, is frequently utilized for Bayesian inference and other statistical challenges. Quasi-Monte Carlo (QMC) replaces the random samples in MC with low discrepancy points and has the potential to substantially enhance error rates. In this paper, we integrate IS with a randomly shifted rank-1 lattice rule, a widely used QMC method. Within the framework of Reproducing Kernel Hilbert spaces (RKHS), we establish the convergence rate of the lattice rule for a class of exponential growth unbounded integrands. Besides, we give the convergence order of IS combined with QMC on this class, which provides a reference for us to choose the importance density later.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convergence rate of Quasi Monte Carlo method with importance sampling for unbounded functions in RKHS\",\"authors\":\"Hejin Wang,&nbsp;Xiaoqun Wang\",\"doi\":\"10.1016/j.aml.2024.109352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Importance Sampling (IS), a variance reduction technique of significant efficacy in Monte Carlo (MC) simulation, is frequently utilized for Bayesian inference and other statistical challenges. Quasi-Monte Carlo (QMC) replaces the random samples in MC with low discrepancy points and has the potential to substantially enhance error rates. In this paper, we integrate IS with a randomly shifted rank-1 lattice rule, a widely used QMC method. Within the framework of Reproducing Kernel Hilbert spaces (RKHS), we establish the convergence rate of the lattice rule for a class of exponential growth unbounded integrands. Besides, we give the convergence order of IS combined with QMC on this class, which provides a reference for us to choose the importance density later.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003720\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003720","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

重要度采样(IS)是蒙特卡罗(MC)模拟中一种显著降低方差的技术,经常用于贝叶斯推理和其他统计挑战。准蒙特卡罗(QMC)用低差异点取代了蒙特卡罗模拟中的随机样本,有可能大幅提高误差率。在本文中,我们将 IS 与随机移动的秩-1 网格规则(一种广泛使用的 QMC 方法)相结合。在重现核希尔伯特空间(RKHS)框架内,我们建立了一类指数增长无约束积分的网格规则收敛率。此外,我们还给出了 IS 结合 QMC 对该类积分的收敛阶数,这为我们以后选择重要度密度提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the convergence rate of Quasi Monte Carlo method with importance sampling for unbounded functions in RKHS
Importance Sampling (IS), a variance reduction technique of significant efficacy in Monte Carlo (MC) simulation, is frequently utilized for Bayesian inference and other statistical challenges. Quasi-Monte Carlo (QMC) replaces the random samples in MC with low discrepancy points and has the potential to substantially enhance error rates. In this paper, we integrate IS with a randomly shifted rank-1 lattice rule, a widely used QMC method. Within the framework of Reproducing Kernel Hilbert spaces (RKHS), we establish the convergence rate of the lattice rule for a class of exponential growth unbounded integrands. Besides, we give the convergence order of IS combined with QMC on this class, which provides a reference for us to choose the importance density later.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信