{"title":"用于自膨胀支架的高取向聚(L-乳酸)单丝在使用寿命期间的失效信号:消失的无定形连接","authors":"Bin Wang, Jinbo Liu, Xue Hu, Chen Zhang, Qingwei Liu, Zhonghua Ni, Gutian Zhao","doi":"10.1016/j.polymdegradstab.2024.111044","DOIUrl":null,"url":null,"abstract":"<div><div>The premature failure of bioresorbable self-expanding stents for peripheral arterial disease could lead to form thrombosis and threaten patients′ lives. Predicting the time and cause of mechanical and structural failure is crucial to prevent premature failure of implanted stents. Herein, we report a situ accelerated hydrolysis to investigate the degradation properties of self-expanding stents braided by high-performance Poly(L-lactic acid) (PLLA) monofilaments in an accelerated term over a formal long one. Degradation, microstructure, and mechanical properties were comprehensively evaluated to identify key factors of the failure during lifetime. The results show that the upper temperature limit for accelerated hydrolysis is 50 °C. The mechanical properties undergo multiple stages of functional holding, decreasing, and eventual failure. It is attributed to uneven degradation and distribution of crystalline and amorphous regions. Specifically, the disappearance of amorphous chains between fibrils at 6 months leads to mechanical failure. Further disappearance of amorphous chains within fibrils at 18 months results in structural disintegration. Additionally, the degradation behavior of the stents and potential effects of degradation products on vascular tissues are validated for predictive accuracy. These insights provide valuable experimental references for optimizing design and clinical application of PLLA-based self-expanding stents.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111044"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure signal of high orientation Poly(L-lactic acid) monofilament for self-expanding stent during lifetime: Disappeared amorphous connections\",\"authors\":\"Bin Wang, Jinbo Liu, Xue Hu, Chen Zhang, Qingwei Liu, Zhonghua Ni, Gutian Zhao\",\"doi\":\"10.1016/j.polymdegradstab.2024.111044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The premature failure of bioresorbable self-expanding stents for peripheral arterial disease could lead to form thrombosis and threaten patients′ lives. Predicting the time and cause of mechanical and structural failure is crucial to prevent premature failure of implanted stents. Herein, we report a situ accelerated hydrolysis to investigate the degradation properties of self-expanding stents braided by high-performance Poly(L-lactic acid) (PLLA) monofilaments in an accelerated term over a formal long one. Degradation, microstructure, and mechanical properties were comprehensively evaluated to identify key factors of the failure during lifetime. The results show that the upper temperature limit for accelerated hydrolysis is 50 °C. The mechanical properties undergo multiple stages of functional holding, decreasing, and eventual failure. It is attributed to uneven degradation and distribution of crystalline and amorphous regions. Specifically, the disappearance of amorphous chains between fibrils at 6 months leads to mechanical failure. Further disappearance of amorphous chains within fibrils at 18 months results in structural disintegration. Additionally, the degradation behavior of the stents and potential effects of degradation products on vascular tissues are validated for predictive accuracy. These insights provide valuable experimental references for optimizing design and clinical application of PLLA-based self-expanding stents.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"230 \",\"pages\":\"Article 111044\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024003872\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003872","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Failure signal of high orientation Poly(L-lactic acid) monofilament for self-expanding stent during lifetime: Disappeared amorphous connections
The premature failure of bioresorbable self-expanding stents for peripheral arterial disease could lead to form thrombosis and threaten patients′ lives. Predicting the time and cause of mechanical and structural failure is crucial to prevent premature failure of implanted stents. Herein, we report a situ accelerated hydrolysis to investigate the degradation properties of self-expanding stents braided by high-performance Poly(L-lactic acid) (PLLA) monofilaments in an accelerated term over a formal long one. Degradation, microstructure, and mechanical properties were comprehensively evaluated to identify key factors of the failure during lifetime. The results show that the upper temperature limit for accelerated hydrolysis is 50 °C. The mechanical properties undergo multiple stages of functional holding, decreasing, and eventual failure. It is attributed to uneven degradation and distribution of crystalline and amorphous regions. Specifically, the disappearance of amorphous chains between fibrils at 6 months leads to mechanical failure. Further disappearance of amorphous chains within fibrils at 18 months results in structural disintegration. Additionally, the degradation behavior of the stents and potential effects of degradation products on vascular tissues are validated for predictive accuracy. These insights provide valuable experimental references for optimizing design and clinical application of PLLA-based self-expanding stents.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.