评估作为 pH 传感器的垂直错位双栅电解质-绝缘体-半导体扩展源隧道场效应晶体管的灵敏度

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Mohd Haroon Khan , Mohamed Fauzi Packeer Mohamed , Muhammad Firdaus Akbar , Girish Wadhwa , Prashant Mani
{"title":"评估作为 pH 传感器的垂直错位双栅电解质-绝缘体-半导体扩展源隧道场效应晶体管的灵敏度","authors":"Mohd Haroon Khan ,&nbsp;Mohamed Fauzi Packeer Mohamed ,&nbsp;Muhammad Firdaus Akbar ,&nbsp;Girish Wadhwa ,&nbsp;Prashant Mani","doi":"10.1016/j.micrna.2024.208005","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, the primary objective is to investigate the impact of vertical gate misalignment on the source and drain regions of 30 nm. The double-gate Electrolyte-Insulated-Semiconductor extended-source Tunnel Field-Effect Transistor (ES-VTFET) is proposed for its potential application as a pH sensor. The gate electrode cannot be perfectly aligned with the channel due to fabrication tolerances, particularly in very short-channel structures. This study aims to introduce a vertical electrolyte Bio-TFET-based pH sensor capable of detecting pH changes in aqueous (electrolyte) solutions. The effect of variation in pH values on the electrical characteristics of the device such as drain current (<span><math><mrow><msub><mi>I</mi><mrow><mi>D</mi><mi>S</mi></mrow></msub></mrow></math></span>), transconductance (<span><math><mrow><msub><mi>g</mi><mi>m</mi></msub></mrow></math></span>), voltage sensitivity (<span><math><mrow><msub><mi>S</mi><mi>V</mi></msub></mrow></math></span>) and current sensitivity (<span><math><mrow><msub><mi>S</mi><mi>I</mi></msub></mrow></math></span>) have been examined. It has been assumed that the electrolyte section is an intrinsic semiconductor material where electrons and holes signify mobile ions in aqueous solutions. The electrolyte region has an electrolyte dielectric constant of 78, an energy bandgap of 1.12 eV, and an electron affinity of 1.32 eV. Finally, the gate misalignment aspect of the proposed bio TFET-based pH sensor is emphasized by comparing sensitivity parameters. Hence, the proposed pH sensor can be used as a potential candidate for the futuristic application of biosensors.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"196 ","pages":"Article 208005"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of sensitivity in a vertically misaligned double-gate electrolyte-insulator-semiconductor extended source tunnel FET as pH sensor\",\"authors\":\"Mohd Haroon Khan ,&nbsp;Mohamed Fauzi Packeer Mohamed ,&nbsp;Muhammad Firdaus Akbar ,&nbsp;Girish Wadhwa ,&nbsp;Prashant Mani\",\"doi\":\"10.1016/j.micrna.2024.208005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research, the primary objective is to investigate the impact of vertical gate misalignment on the source and drain regions of 30 nm. The double-gate Electrolyte-Insulated-Semiconductor extended-source Tunnel Field-Effect Transistor (ES-VTFET) is proposed for its potential application as a pH sensor. The gate electrode cannot be perfectly aligned with the channel due to fabrication tolerances, particularly in very short-channel structures. This study aims to introduce a vertical electrolyte Bio-TFET-based pH sensor capable of detecting pH changes in aqueous (electrolyte) solutions. The effect of variation in pH values on the electrical characteristics of the device such as drain current (<span><math><mrow><msub><mi>I</mi><mrow><mi>D</mi><mi>S</mi></mrow></msub></mrow></math></span>), transconductance (<span><math><mrow><msub><mi>g</mi><mi>m</mi></msub></mrow></math></span>), voltage sensitivity (<span><math><mrow><msub><mi>S</mi><mi>V</mi></msub></mrow></math></span>) and current sensitivity (<span><math><mrow><msub><mi>S</mi><mi>I</mi></msub></mrow></math></span>) have been examined. It has been assumed that the electrolyte section is an intrinsic semiconductor material where electrons and holes signify mobile ions in aqueous solutions. The electrolyte region has an electrolyte dielectric constant of 78, an energy bandgap of 1.12 eV, and an electron affinity of 1.32 eV. Finally, the gate misalignment aspect of the proposed bio TFET-based pH sensor is emphasized by comparing sensitivity parameters. Hence, the proposed pH sensor can be used as a potential candidate for the futuristic application of biosensors.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"196 \",\"pages\":\"Article 208005\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324002541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的主要目的是调查垂直栅极错位对 30 纳米源极和漏极区域的影响。由于双栅极电解质绝缘半导体扩展源极隧道场效应晶体管 (ES-VTFET) 有可能应用于 pH 传感器,因此提出了这种晶体管。由于制造公差的原因,栅电极无法与沟道完全对齐,特别是在非常短的沟道结构中。本研究旨在介绍一种基于垂直电解质 Bio-TFET 的 pH 传感器,它能够检测水(电解质)溶液中的 pH 值变化。研究考察了 pH 值变化对漏极电流 (IDS)、跨导 (gm)、电压灵敏度 (SV) 和电流灵敏度 (SI) 等器件电气特性的影响。假设电解质部分是一种本征半导体材料,电子和空穴代表水溶液中的移动离子。电解质区域的电解质介电常数为 78,能带隙为 1.12 eV,电子亲和力为 1.32 eV。最后,通过比较灵敏度参数,强调了所提出的基于生物 TFET 的 pH 传感器的栅极错位问题。因此,所提出的 pH 传感器可作为未来生物传感器应用的潜在候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of sensitivity in a vertically misaligned double-gate electrolyte-insulator-semiconductor extended source tunnel FET as pH sensor
In this research, the primary objective is to investigate the impact of vertical gate misalignment on the source and drain regions of 30 nm. The double-gate Electrolyte-Insulated-Semiconductor extended-source Tunnel Field-Effect Transistor (ES-VTFET) is proposed for its potential application as a pH sensor. The gate electrode cannot be perfectly aligned with the channel due to fabrication tolerances, particularly in very short-channel structures. This study aims to introduce a vertical electrolyte Bio-TFET-based pH sensor capable of detecting pH changes in aqueous (electrolyte) solutions. The effect of variation in pH values on the electrical characteristics of the device such as drain current (IDS), transconductance (gm), voltage sensitivity (SV) and current sensitivity (SI) have been examined. It has been assumed that the electrolyte section is an intrinsic semiconductor material where electrons and holes signify mobile ions in aqueous solutions. The electrolyte region has an electrolyte dielectric constant of 78, an energy bandgap of 1.12 eV, and an electron affinity of 1.32 eV. Finally, the gate misalignment aspect of the proposed bio TFET-based pH sensor is emphasized by comparing sensitivity parameters. Hence, the proposed pH sensor can be used as a potential candidate for the futuristic application of biosensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信