利用 TPE 优化 SMOGN 增强页岩气 EUR 预测:在马塞勒斯页岩中利用不平衡数据集对机器学习算法进行比较研究

0 ENERGY & FUELS
Yildirim Kocoglu , Sheldon Burt Gorell , Hossein Emadi , Athar Hussain , Farshad Bolouri , Phillip McElroy , Marshal Wigwe
{"title":"利用 TPE 优化 SMOGN 增强页岩气 EUR 预测:在马塞勒斯页岩中利用不平衡数据集对机器学习算法进行比较研究","authors":"Yildirim Kocoglu ,&nbsp;Sheldon Burt Gorell ,&nbsp;Hossein Emadi ,&nbsp;Athar Hussain ,&nbsp;Farshad Bolouri ,&nbsp;Phillip McElroy ,&nbsp;Marshal Wigwe","doi":"10.1016/j.jgsce.2024.205475","DOIUrl":null,"url":null,"abstract":"<div><div>Oil and gas operators frequently rely on traditional methods to predict Estimated Ultimate Recovery (EUR) but, these methods often fail to accurately predict shale gas EUR. Therefore, machine learning (ML) algorithms were shown as promising alternatives but, the negative effects of imbalanced datasets on their performance still remains underexplored. This study addresses this gap with a Tree-Parzen Estimator (TPE) optimized Synthetic Minority Over-sampling Technique for Regression with Gaussian Noise (SMOGN) to alleviate the detrimental effects of the imbalanced datasets on model performance. Two cases were compared: one employed standard pre-processing while, the other employed TPE optimized SMOGN. Four ML algorithms: Artificial Neural (ANN), Deep-ANN, Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost) were trained across both cases with an imbalanced dataset of 460 Marcellus shale wells. Exploratory data analysis revealed that the imbalance was due to the evolution of completion techniques, leading to the underrepresentation of wells completed with more recent, aggressive methods. The proposed framework improved <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of the models from 0.8243 to 0.8934 to 0.8851–0.9186 with more significant gains in the underrepresented wells in the higher EUR regions (<span><math><mrow><mo>&gt;</mo><mn>1.5</mn><mo>×</mo><msup><mn>10</mn><mn>7</mn></msup><mspace></mspace><mtext>Mscf</mtext></mrow></math></span>), where the <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> improved from 0.2155 to 0.4598 to 0.5615–0.9472. The SMOGN enhanced SVR had the highest computational efficiency (<span><math><mrow><mo>&lt;</mo><mn>1</mn><mspace></mspace><mtext>second</mtext></mrow></math></span> to train) and highest performance <span><math><mrow><mo>(</mo><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of 0.9472) in these higher EUR regions, while the SMOGN enhanced Deep-ANN had the highest overall performance (<span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of 0.9186). This framework outperforms standard pre-processing frameworks. Additionally, it enables operators to predict shale gas EUR more accurately for future infill wells completed with recent techniques, even while the wells are still producing in transient flow, facilitating early cost-saving decisions. To the best knowledge of the authors, this is the first research that proposed TPE optimized SMOGN to improve shale gas predictions.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"131 ","pages":"Article 205475"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing shale gas EUR predictions with TPE optimized SMOGN: A comparative study of machine learning algorithms in the marcellus shale with an imbalanced dataset\",\"authors\":\"Yildirim Kocoglu ,&nbsp;Sheldon Burt Gorell ,&nbsp;Hossein Emadi ,&nbsp;Athar Hussain ,&nbsp;Farshad Bolouri ,&nbsp;Phillip McElroy ,&nbsp;Marshal Wigwe\",\"doi\":\"10.1016/j.jgsce.2024.205475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oil and gas operators frequently rely on traditional methods to predict Estimated Ultimate Recovery (EUR) but, these methods often fail to accurately predict shale gas EUR. Therefore, machine learning (ML) algorithms were shown as promising alternatives but, the negative effects of imbalanced datasets on their performance still remains underexplored. This study addresses this gap with a Tree-Parzen Estimator (TPE) optimized Synthetic Minority Over-sampling Technique for Regression with Gaussian Noise (SMOGN) to alleviate the detrimental effects of the imbalanced datasets on model performance. Two cases were compared: one employed standard pre-processing while, the other employed TPE optimized SMOGN. Four ML algorithms: Artificial Neural (ANN), Deep-ANN, Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost) were trained across both cases with an imbalanced dataset of 460 Marcellus shale wells. Exploratory data analysis revealed that the imbalance was due to the evolution of completion techniques, leading to the underrepresentation of wells completed with more recent, aggressive methods. The proposed framework improved <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of the models from 0.8243 to 0.8934 to 0.8851–0.9186 with more significant gains in the underrepresented wells in the higher EUR regions (<span><math><mrow><mo>&gt;</mo><mn>1.5</mn><mo>×</mo><msup><mn>10</mn><mn>7</mn></msup><mspace></mspace><mtext>Mscf</mtext></mrow></math></span>), where the <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> improved from 0.2155 to 0.4598 to 0.5615–0.9472. The SMOGN enhanced SVR had the highest computational efficiency (<span><math><mrow><mo>&lt;</mo><mn>1</mn><mspace></mspace><mtext>second</mtext></mrow></math></span> to train) and highest performance <span><math><mrow><mo>(</mo><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of 0.9472) in these higher EUR regions, while the SMOGN enhanced Deep-ANN had the highest overall performance (<span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of 0.9186). This framework outperforms standard pre-processing frameworks. Additionally, it enables operators to predict shale gas EUR more accurately for future infill wells completed with recent techniques, even while the wells are still producing in transient flow, facilitating early cost-saving decisions. To the best knowledge of the authors, this is the first research that proposed TPE optimized SMOGN to improve shale gas predictions.</div></div>\",\"PeriodicalId\":100568,\"journal\":{\"name\":\"Gas Science and Engineering\",\"volume\":\"131 \",\"pages\":\"Article 205475\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949908924002711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908924002711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

石油和天然气运营商经常依靠传统方法预测估计最终采收率(EUR),但这些方法往往无法准确预测页岩气的最终采收率。因此,机器学习(ML)算法被认为是很有前途的替代方法,但不平衡数据集对其性能的负面影响仍未得到充分探索。本研究采用树-帕岑估计器(TPE)优化了高斯噪声回归合成少数群体过度采样技术(SMOGN),以减轻不平衡数据集对模型性能的不利影响。对两种情况进行了比较:一种情况采用了标准预处理,另一种情况采用了 TPE 优化的 SMOGN。四种 ML 算法:人工神经网络 (ANN)、深度人工神经网络 (Deep-ANN)、支持向量回归 (SVR) 和极梯度提升 (XGBoost) 在这两种情况下均使用 460 个马塞勒斯页岩井的不平衡数据集进行了训练。探索性数据分析显示,这种不平衡是由于完井技术的演变造成的,导致采用更先进的完井方法完井的比例偏低。所提出的框架将模型的 R2 从 0.8243 到 0.8934 再提高到 0.8851-0.9186,在高欧元区(>1.5×107Mscf)代表性不足的油井中收益更为显著,R2 从 0.2155 到 0.4598 再提高到 0.5615-0.9472。SMOGN 增强型 SVR 在这些较高的 EUR 区域具有最高的计算效率(1 秒钟训练时间)和最高的性能(R2 为 0.9472),而 SMOGN 增强型 Deep-ANN 具有最高的整体性能(R2 为 0.9186)。该框架的性能优于标准预处理框架。此外,它还能让运营商更准确地预测采用最新技术完成的未来填充井的页岩气欧姆值,即使这些井仍在瞬态流中生产,从而有助于尽早做出节约成本的决策。据作者所知,这是第一项提出用 TPE 优化 SMOGN 来改进页岩气预测的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing shale gas EUR predictions with TPE optimized SMOGN: A comparative study of machine learning algorithms in the marcellus shale with an imbalanced dataset
Oil and gas operators frequently rely on traditional methods to predict Estimated Ultimate Recovery (EUR) but, these methods often fail to accurately predict shale gas EUR. Therefore, machine learning (ML) algorithms were shown as promising alternatives but, the negative effects of imbalanced datasets on their performance still remains underexplored. This study addresses this gap with a Tree-Parzen Estimator (TPE) optimized Synthetic Minority Over-sampling Technique for Regression with Gaussian Noise (SMOGN) to alleviate the detrimental effects of the imbalanced datasets on model performance. Two cases were compared: one employed standard pre-processing while, the other employed TPE optimized SMOGN. Four ML algorithms: Artificial Neural (ANN), Deep-ANN, Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost) were trained across both cases with an imbalanced dataset of 460 Marcellus shale wells. Exploratory data analysis revealed that the imbalance was due to the evolution of completion techniques, leading to the underrepresentation of wells completed with more recent, aggressive methods. The proposed framework improved R2 of the models from 0.8243 to 0.8934 to 0.8851–0.9186 with more significant gains in the underrepresented wells in the higher EUR regions (>1.5×107Mscf), where the R2 improved from 0.2155 to 0.4598 to 0.5615–0.9472. The SMOGN enhanced SVR had the highest computational efficiency (<1second to train) and highest performance (R2 of 0.9472) in these higher EUR regions, while the SMOGN enhanced Deep-ANN had the highest overall performance (R2 of 0.9186). This framework outperforms standard pre-processing frameworks. Additionally, it enables operators to predict shale gas EUR more accurately for future infill wells completed with recent techniques, even while the wells are still producing in transient flow, facilitating early cost-saving decisions. To the best knowledge of the authors, this is the first research that proposed TPE optimized SMOGN to improve shale gas predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信