{"title":"关于吸入药物颗粒在现实吸入器-气道模型各区域沉积分布和机制的数值研究","authors":"Lixing Zhang , Zhenbo Tong , Ya Zhang , Aibing Yu","doi":"10.1016/j.powtec.2024.120402","DOIUrl":null,"url":null,"abstract":"<div><div>Inhaled drug delivery is widely used in the treatment of respiratory diseases. Understanding the deposition mechanisms of dry powder inhalers (DPIs) in different regions of the airway is crucial for inhaler development and prediction of the deposition distribution of drug particles. And the insertion of the inhaler will significantly alter the pattern of airflow in the airway. The main objective of this study is to systematically investigate the distribution and mechanism of aerosol particle deposition in various regions of the inhaler-airway model. Computational fluid dynamics (CFD) was used to simulate the effect of inhalation flow rate on the deposition of drug particles in various regions of the airway. The discrete phase model (DPM) was adopted to track the deposition trajectories of drug particles. Three different inhalation flow rates together with six particle sizes and five particle densities were analyzed. The results indicated that the overall deposition fraction of drug particles gradually increased with particle size and density. The pattern of depositional distribution in other local areas is quite different from the overall pattern except in the oral. The deposition fraction in the pharynx was much larger than in the other local regions, the deposition fractions in the larynx, trachea, carina and bronchi were less than 5 %. The increase in density increases the deposition fraction of particles in various regions throughout the respiratory tract when the inhalation flow rate is 30 L/min. Most of the particles in the oral are deposited on the tongue, and the particles in the bronchus are more distributed in the main trunk, while deeper in the bronchus, particles are also deposited in the bifurcation region. The subject's inhalation posture also affects the local distribution of the airflow. The findings of present study can help to guide the optimization and in vitro-in vivo correlation of DPIs.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120402"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on the deposition distribution and mechanism of inhaled drug particles in various regions of the realistic inhaler-airway model\",\"authors\":\"Lixing Zhang , Zhenbo Tong , Ya Zhang , Aibing Yu\",\"doi\":\"10.1016/j.powtec.2024.120402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inhaled drug delivery is widely used in the treatment of respiratory diseases. Understanding the deposition mechanisms of dry powder inhalers (DPIs) in different regions of the airway is crucial for inhaler development and prediction of the deposition distribution of drug particles. And the insertion of the inhaler will significantly alter the pattern of airflow in the airway. The main objective of this study is to systematically investigate the distribution and mechanism of aerosol particle deposition in various regions of the inhaler-airway model. Computational fluid dynamics (CFD) was used to simulate the effect of inhalation flow rate on the deposition of drug particles in various regions of the airway. The discrete phase model (DPM) was adopted to track the deposition trajectories of drug particles. Three different inhalation flow rates together with six particle sizes and five particle densities were analyzed. The results indicated that the overall deposition fraction of drug particles gradually increased with particle size and density. The pattern of depositional distribution in other local areas is quite different from the overall pattern except in the oral. The deposition fraction in the pharynx was much larger than in the other local regions, the deposition fractions in the larynx, trachea, carina and bronchi were less than 5 %. The increase in density increases the deposition fraction of particles in various regions throughout the respiratory tract when the inhalation flow rate is 30 L/min. Most of the particles in the oral are deposited on the tongue, and the particles in the bronchus are more distributed in the main trunk, while deeper in the bronchus, particles are also deposited in the bifurcation region. The subject's inhalation posture also affects the local distribution of the airflow. The findings of present study can help to guide the optimization and in vitro-in vivo correlation of DPIs.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120402\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024010465\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010465","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Numerical study on the deposition distribution and mechanism of inhaled drug particles in various regions of the realistic inhaler-airway model
Inhaled drug delivery is widely used in the treatment of respiratory diseases. Understanding the deposition mechanisms of dry powder inhalers (DPIs) in different regions of the airway is crucial for inhaler development and prediction of the deposition distribution of drug particles. And the insertion of the inhaler will significantly alter the pattern of airflow in the airway. The main objective of this study is to systematically investigate the distribution and mechanism of aerosol particle deposition in various regions of the inhaler-airway model. Computational fluid dynamics (CFD) was used to simulate the effect of inhalation flow rate on the deposition of drug particles in various regions of the airway. The discrete phase model (DPM) was adopted to track the deposition trajectories of drug particles. Three different inhalation flow rates together with six particle sizes and five particle densities were analyzed. The results indicated that the overall deposition fraction of drug particles gradually increased with particle size and density. The pattern of depositional distribution in other local areas is quite different from the overall pattern except in the oral. The deposition fraction in the pharynx was much larger than in the other local regions, the deposition fractions in the larynx, trachea, carina and bronchi were less than 5 %. The increase in density increases the deposition fraction of particles in various regions throughout the respiratory tract when the inhalation flow rate is 30 L/min. Most of the particles in the oral are deposited on the tongue, and the particles in the bronchus are more distributed in the main trunk, while deeper in the bronchus, particles are also deposited in the bifurcation region. The subject's inhalation posture also affects the local distribution of the airflow. The findings of present study can help to guide the optimization and in vitro-in vivo correlation of DPIs.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.