Yu Xie , Manajit Sengupta , Jaemo Yang , Aron Habte , Grant Buster , Brandon Benton , Michael Foster , Andrew Heidinger , Yangang Liu
{"title":"云层对卫星太阳资源数据可靠性的影响","authors":"Yu Xie , Manajit Sengupta , Jaemo Yang , Aron Habte , Grant Buster , Brandon Benton , Michael Foster , Andrew Heidinger , Yangang Liu","doi":"10.1016/j.rser.2024.115070","DOIUrl":null,"url":null,"abstract":"<div><div>Satellite-based solar resource data are often developed and validated by using binary cloudiness categories: clear sky or overcast cloudy sky. To investigate the reliability of solar resource data in partially cloudy conditions, we estimate cloud fraction using two distinct algorithms: a physical retrieval model using surface observed global horizontal irradiance (GHI) and direct normal irradiance (DNI) and a temporal average of cloud mask data estimated by the observed DNI. Our analysis reveals a significant presence of scattered clouds, broken clouds, and mismatches between satellite- and surface-based cloud data at 17 surface sites across the contiguous United States, though confidently clear and cloudy conditions collectively account for more than 70 % of the data. Solar radiation is computed using the National Solar Radiation Database (NSRDB) algorithm and validated using surface observations. Our findings suggest that, in the presence of scattered clouds, NSRDB data for clear-sky conditions can be subject to significant overestimation. In cloudy-sky conditions classified by satellite data, DNI computed by the Fast All-sky Radiation Model for Solar applications with DNI (FARMS-DNI) can be underestimated when limited clouds are detected by surface observations. The bias observed in several cloudiness categories indicates that the NSRDB is exceptionally accurate in confidently clear conditions. However, clear-sky conditions with scattered clouds and mismatched cloud data contribute significantly to the overall uncertainties in the NSRDB. Therefore, future improvements in solar resource data should involve development and implementation of satellite-derived cloud fraction and should consider a novel radiative transfer model accounting for amplified cloud reflection. The evaluation within cloudiness categories also provides a physical rationale for the superior performance of FARMS-DNI compared to the Direct Insolation Simulation Code (DISC) in both cloudy-sky and all-sky conditions.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of cloud cover on the reliability of satellite-based solar resource data\",\"authors\":\"Yu Xie , Manajit Sengupta , Jaemo Yang , Aron Habte , Grant Buster , Brandon Benton , Michael Foster , Andrew Heidinger , Yangang Liu\",\"doi\":\"10.1016/j.rser.2024.115070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Satellite-based solar resource data are often developed and validated by using binary cloudiness categories: clear sky or overcast cloudy sky. To investigate the reliability of solar resource data in partially cloudy conditions, we estimate cloud fraction using two distinct algorithms: a physical retrieval model using surface observed global horizontal irradiance (GHI) and direct normal irradiance (DNI) and a temporal average of cloud mask data estimated by the observed DNI. Our analysis reveals a significant presence of scattered clouds, broken clouds, and mismatches between satellite- and surface-based cloud data at 17 surface sites across the contiguous United States, though confidently clear and cloudy conditions collectively account for more than 70 % of the data. Solar radiation is computed using the National Solar Radiation Database (NSRDB) algorithm and validated using surface observations. Our findings suggest that, in the presence of scattered clouds, NSRDB data for clear-sky conditions can be subject to significant overestimation. In cloudy-sky conditions classified by satellite data, DNI computed by the Fast All-sky Radiation Model for Solar applications with DNI (FARMS-DNI) can be underestimated when limited clouds are detected by surface observations. The bias observed in several cloudiness categories indicates that the NSRDB is exceptionally accurate in confidently clear conditions. However, clear-sky conditions with scattered clouds and mismatched cloud data contribute significantly to the overall uncertainties in the NSRDB. Therefore, future improvements in solar resource data should involve development and implementation of satellite-derived cloud fraction and should consider a novel radiative transfer model accounting for amplified cloud reflection. The evaluation within cloudiness categories also provides a physical rationale for the superior performance of FARMS-DNI compared to the Direct Insolation Simulation Code (DISC) in both cloudy-sky and all-sky conditions.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124007962\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007962","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The influence of cloud cover on the reliability of satellite-based solar resource data
Satellite-based solar resource data are often developed and validated by using binary cloudiness categories: clear sky or overcast cloudy sky. To investigate the reliability of solar resource data in partially cloudy conditions, we estimate cloud fraction using two distinct algorithms: a physical retrieval model using surface observed global horizontal irradiance (GHI) and direct normal irradiance (DNI) and a temporal average of cloud mask data estimated by the observed DNI. Our analysis reveals a significant presence of scattered clouds, broken clouds, and mismatches between satellite- and surface-based cloud data at 17 surface sites across the contiguous United States, though confidently clear and cloudy conditions collectively account for more than 70 % of the data. Solar radiation is computed using the National Solar Radiation Database (NSRDB) algorithm and validated using surface observations. Our findings suggest that, in the presence of scattered clouds, NSRDB data for clear-sky conditions can be subject to significant overestimation. In cloudy-sky conditions classified by satellite data, DNI computed by the Fast All-sky Radiation Model for Solar applications with DNI (FARMS-DNI) can be underestimated when limited clouds are detected by surface observations. The bias observed in several cloudiness categories indicates that the NSRDB is exceptionally accurate in confidently clear conditions. However, clear-sky conditions with scattered clouds and mismatched cloud data contribute significantly to the overall uncertainties in the NSRDB. Therefore, future improvements in solar resource data should involve development and implementation of satellite-derived cloud fraction and should consider a novel radiative transfer model accounting for amplified cloud reflection. The evaluation within cloudiness categories also provides a physical rationale for the superior performance of FARMS-DNI compared to the Direct Insolation Simulation Code (DISC) in both cloudy-sky and all-sky conditions.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.