Yuxuan Bai, Yunzi Wang, Junyu Chen, Keda Zhu, Jianjun Wang
{"title":"活性二维共价有机框架高效、高选择性地光催化还原六价铬","authors":"Yuxuan Bai, Yunzi Wang, Junyu Chen, Keda Zhu, Jianjun Wang","doi":"10.1016/j.pnsc.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a two-dimensional covalent organic framework material (named HDU-27) with thiazole structure and π-π conjugation has been successfully synthesized using the ligands tri acetaldehyde-based methoxyphenyl and benzo [1,2-d:4,5-d]thiazole-2,6-diamine in an ammonia-formaldehyde condensation reaction and applied to the photocatalytic reduction study of chromium (Cr). The photocatalytic experiments showed that HDU-27 had an excellent photocatalytic reduction of Cr(VI) with a high Cr(VI) reduction efficiency of 99.5 % at pH = 2 for 60 min. In the presence of interfering ions, HDU-27 exhibited excellent selectivity for Cr(VI). Mechanistic experiments and electron spin resonance characterization identified e<sup>−</sup> and ·O<sub>2</sub><sup>−</sup> radicals as the main active species in Cr(VI) photocatalytic reduction. In addition, the photocatalytic rate of HDU-27 was significantly accelerated in the Cr(VI)/organic pollutant (RhB, MB, MO) mixed system due to the oxidation of the organic matter and the increase in the separation of photogenerated e<sup>−</sup>−h<sup>+</sup>. The cycling experiments demonstrated the excellent reduction stability and recyclability of HDU-27 in the photocatalytic reduction of Cr(VI). HDU-27 is an excellent photocatalyst with potential application for removing organic pollutants and heavy metal ions from contaminated wastewater.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 5","pages":"Pages 933-941"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and highly selective photocatalytic reduction of Cr(VI) by an active two-dimensional covalent organic framework\",\"authors\":\"Yuxuan Bai, Yunzi Wang, Junyu Chen, Keda Zhu, Jianjun Wang\",\"doi\":\"10.1016/j.pnsc.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a two-dimensional covalent organic framework material (named HDU-27) with thiazole structure and π-π conjugation has been successfully synthesized using the ligands tri acetaldehyde-based methoxyphenyl and benzo [1,2-d:4,5-d]thiazole-2,6-diamine in an ammonia-formaldehyde condensation reaction and applied to the photocatalytic reduction study of chromium (Cr). The photocatalytic experiments showed that HDU-27 had an excellent photocatalytic reduction of Cr(VI) with a high Cr(VI) reduction efficiency of 99.5 % at pH = 2 for 60 min. In the presence of interfering ions, HDU-27 exhibited excellent selectivity for Cr(VI). Mechanistic experiments and electron spin resonance characterization identified e<sup>−</sup> and ·O<sub>2</sub><sup>−</sup> radicals as the main active species in Cr(VI) photocatalytic reduction. In addition, the photocatalytic rate of HDU-27 was significantly accelerated in the Cr(VI)/organic pollutant (RhB, MB, MO) mixed system due to the oxidation of the organic matter and the increase in the separation of photogenerated e<sup>−</sup>−h<sup>+</sup>. The cycling experiments demonstrated the excellent reduction stability and recyclability of HDU-27 in the photocatalytic reduction of Cr(VI). HDU-27 is an excellent photocatalyst with potential application for removing organic pollutants and heavy metal ions from contaminated wastewater.</div></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"34 5\",\"pages\":\"Pages 933-941\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124002004\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124002004","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient and highly selective photocatalytic reduction of Cr(VI) by an active two-dimensional covalent organic framework
In this paper, a two-dimensional covalent organic framework material (named HDU-27) with thiazole structure and π-π conjugation has been successfully synthesized using the ligands tri acetaldehyde-based methoxyphenyl and benzo [1,2-d:4,5-d]thiazole-2,6-diamine in an ammonia-formaldehyde condensation reaction and applied to the photocatalytic reduction study of chromium (Cr). The photocatalytic experiments showed that HDU-27 had an excellent photocatalytic reduction of Cr(VI) with a high Cr(VI) reduction efficiency of 99.5 % at pH = 2 for 60 min. In the presence of interfering ions, HDU-27 exhibited excellent selectivity for Cr(VI). Mechanistic experiments and electron spin resonance characterization identified e− and ·O2− radicals as the main active species in Cr(VI) photocatalytic reduction. In addition, the photocatalytic rate of HDU-27 was significantly accelerated in the Cr(VI)/organic pollutant (RhB, MB, MO) mixed system due to the oxidation of the organic matter and the increase in the separation of photogenerated e−−h+. The cycling experiments demonstrated the excellent reduction stability and recyclability of HDU-27 in the photocatalytic reduction of Cr(VI). HDU-27 is an excellent photocatalyst with potential application for removing organic pollutants and heavy metal ions from contaminated wastewater.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.