{"title":"利用海洋热能转换 (OTEC) 技术生产和储存绿色氢气:Exergo-economic analysis","authors":"","doi":"10.1016/j.ijhydene.2024.10.290","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents and analyses three plant configurations of the Ocean Thermal Energy Conversion (OTEC) technology. All the solutions are based on using the OTEC system to obtain hydrogen through an electrolyzer. The hydrogen is then compressed and stored. In the first and second layouts, a Rankine cycle with ammonia and a mixture of water and ethanol is utilised respectively; in the third layout, a Kalina cycle is considered. In each configuration, the OTEC cycle is coupled with a polymer electrolyte membrane (PEM) electrolyzer and the compression and storage system. The water entering the electrolyzer is pre-heated to 80 °C by a solar collector. Energy, exergy, and exergo-economic studies were conducted to evaluate the cost of producing, compressing, and storing hydrogen. A parametric analysis examining the main design constraints was performed based on the temperature range of the condenser, the mass flow ratio of hot and cold resource flows, and the mass fraction. The maximum value of the overall exergy efficiency calculated is equal to 93.5% for the Kalina cycle, and 0.524 €/kWh is the minimum cost of hydrogen production achieved. The results were compared with typical data from other hydrogen production systems.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the Ocean Thermal Energy Conversion (OTEC) technology for green hydrogen production and storage: Exergo-economic analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.ijhydene.2024.10.290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents and analyses three plant configurations of the Ocean Thermal Energy Conversion (OTEC) technology. All the solutions are based on using the OTEC system to obtain hydrogen through an electrolyzer. The hydrogen is then compressed and stored. In the first and second layouts, a Rankine cycle with ammonia and a mixture of water and ethanol is utilised respectively; in the third layout, a Kalina cycle is considered. In each configuration, the OTEC cycle is coupled with a polymer electrolyte membrane (PEM) electrolyzer and the compression and storage system. The water entering the electrolyzer is pre-heated to 80 °C by a solar collector. Energy, exergy, and exergo-economic studies were conducted to evaluate the cost of producing, compressing, and storing hydrogen. A parametric analysis examining the main design constraints was performed based on the temperature range of the condenser, the mass flow ratio of hot and cold resource flows, and the mass fraction. The maximum value of the overall exergy efficiency calculated is equal to 93.5% for the Kalina cycle, and 0.524 €/kWh is the minimum cost of hydrogen production achieved. The results were compared with typical data from other hydrogen production systems.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924044963\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924044963","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍并分析了海洋热能转换(OTEC)技术的三种工厂配置。所有解决方案都基于使用 OTEC 系统通过电解槽获取氢气。然后对氢气进行压缩和储存。在第一种和第二种布局中,分别使用了含氨的朗肯循环以及水和乙醇的混合物;在第三种布局中,考虑了卡利纳循环。在每种配置中,OTEC 循环都与聚合物电解质膜(PEM)电解槽以及压缩和储存系统相连。进入电解槽的水通过太阳能集热器预热至 80 °C。为评估生产、压缩和储存氢气的成本,进行了能量、放能和放能经济学研究。根据冷凝器的温度范围、冷热资源流的质量流量比和质量分数,对主要设计限制进行了参数分析。计算得出的卡利纳循环整体能效最大值为 93.5%,制氢成本最低为 0.524 欧元/千瓦时。计算结果与其他制氢系统的典型数据进行了比较。
Exploiting the Ocean Thermal Energy Conversion (OTEC) technology for green hydrogen production and storage: Exergo-economic analysis
This study presents and analyses three plant configurations of the Ocean Thermal Energy Conversion (OTEC) technology. All the solutions are based on using the OTEC system to obtain hydrogen through an electrolyzer. The hydrogen is then compressed and stored. In the first and second layouts, a Rankine cycle with ammonia and a mixture of water and ethanol is utilised respectively; in the third layout, a Kalina cycle is considered. In each configuration, the OTEC cycle is coupled with a polymer electrolyte membrane (PEM) electrolyzer and the compression and storage system. The water entering the electrolyzer is pre-heated to 80 °C by a solar collector. Energy, exergy, and exergo-economic studies were conducted to evaluate the cost of producing, compressing, and storing hydrogen. A parametric analysis examining the main design constraints was performed based on the temperature range of the condenser, the mass flow ratio of hot and cold resource flows, and the mass fraction. The maximum value of the overall exergy efficiency calculated is equal to 93.5% for the Kalina cycle, and 0.524 €/kWh is the minimum cost of hydrogen production achieved. The results were compared with typical data from other hydrogen production systems.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.