Yaxin Zhang , Long Cheng , Ying-Jie Zhu , Jin Wu , Han-Ping Yu , Sida Xie , Dandan Li , Zhaohui Wang , Heng Li
{"title":"通过基于硫酸钡纳米纤维的电介质隔膜对石墨负极进行可逆锂电镀调节,实现快速充电和高安全性锂离子电池","authors":"Yaxin Zhang , Long Cheng , Ying-Jie Zhu , Jin Wu , Han-Ping Yu , Sida Xie , Dandan Li , Zhaohui Wang , Heng Li","doi":"10.1016/j.jechem.2024.08.053","DOIUrl":null,"url":null,"abstract":"<div><div>Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithium-ion batteries with graphite anodes. Herein, a dielectric and fire-resistant separator based on hybrid nanofibers of barium sulfate (BS) and bacterial cellulose (BC) is developed to synchronously enhance the battery’s fast charging and thermal-safety performances. The regulation mechanism of the dielectric BS/BC separator in enhancing the Li<sup>+</sup> ion transport and Li plating reversibility is revealed. (1) The Max-Wagner polarization electric field of the dielectric BS/BC separator can accelerate the desolvation of solvated Li<sup>+</sup> ions, enhancing their transport kinetics. (2) Moreover, due to the charge balancing effect, the dielectric BS/BC separator homogenizes the electric field/Li<sup>+</sup> ion flux at the graphite anode-separator interface, facilitating uniform Li plating and suppressing Li dendrite growth. Consequently, the fast-charge graphite anode with the BS/BC separator shows higher Coulombic efficiency (99.0% vs. 96.9%) and longer cycling lifespan (100 cycles vs. 59 cycles) than that with the polypropylene (PP) separator in the constant-lithiation cycling test at 2 mA cm<sup>−2</sup>. The high-loading LiFePO<sub>4</sub> (15.5 mg cm<sup>−2</sup>)//graphite (7.5 mg cm<sup>−2</sup>) full cell with the BS/BC separator exhibits excellent fast charging performance, retaining 70% of its capacity after 500 cycles at a high rate of 2C, which is significantly better than that of the cell with the PP separator (retaining only 27% of its capacity after 500 cycles). More importantly, the thermally stable BS/BC separator effectively elevates the critical temperature and reduces the heat release rate during thermal runaway, thereby significantly enhancing the battery’s safety.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 511-523"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible Li plating regulation on graphite anode through a barium sulfate nanofibers-based dielectric separator for fast charging and high-safety lithium-ion battery\",\"authors\":\"Yaxin Zhang , Long Cheng , Ying-Jie Zhu , Jin Wu , Han-Ping Yu , Sida Xie , Dandan Li , Zhaohui Wang , Heng Li\",\"doi\":\"10.1016/j.jechem.2024.08.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithium-ion batteries with graphite anodes. Herein, a dielectric and fire-resistant separator based on hybrid nanofibers of barium sulfate (BS) and bacterial cellulose (BC) is developed to synchronously enhance the battery’s fast charging and thermal-safety performances. The regulation mechanism of the dielectric BS/BC separator in enhancing the Li<sup>+</sup> ion transport and Li plating reversibility is revealed. (1) The Max-Wagner polarization electric field of the dielectric BS/BC separator can accelerate the desolvation of solvated Li<sup>+</sup> ions, enhancing their transport kinetics. (2) Moreover, due to the charge balancing effect, the dielectric BS/BC separator homogenizes the electric field/Li<sup>+</sup> ion flux at the graphite anode-separator interface, facilitating uniform Li plating and suppressing Li dendrite growth. Consequently, the fast-charge graphite anode with the BS/BC separator shows higher Coulombic efficiency (99.0% vs. 96.9%) and longer cycling lifespan (100 cycles vs. 59 cycles) than that with the polypropylene (PP) separator in the constant-lithiation cycling test at 2 mA cm<sup>−2</sup>. The high-loading LiFePO<sub>4</sub> (15.5 mg cm<sup>−2</sup>)//graphite (7.5 mg cm<sup>−2</sup>) full cell with the BS/BC separator exhibits excellent fast charging performance, retaining 70% of its capacity after 500 cycles at a high rate of 2C, which is significantly better than that of the cell with the PP separator (retaining only 27% of its capacity after 500 cycles). More importantly, the thermally stable BS/BC separator effectively elevates the critical temperature and reduces the heat release rate during thermal runaway, thereby significantly enhancing the battery’s safety.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"101 \",\"pages\":\"Pages 511-523\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495624006090\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006090","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
Reversible Li plating regulation on graphite anode through a barium sulfate nanofibers-based dielectric separator for fast charging and high-safety lithium-ion battery
Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithium-ion batteries with graphite anodes. Herein, a dielectric and fire-resistant separator based on hybrid nanofibers of barium sulfate (BS) and bacterial cellulose (BC) is developed to synchronously enhance the battery’s fast charging and thermal-safety performances. The regulation mechanism of the dielectric BS/BC separator in enhancing the Li+ ion transport and Li plating reversibility is revealed. (1) The Max-Wagner polarization electric field of the dielectric BS/BC separator can accelerate the desolvation of solvated Li+ ions, enhancing their transport kinetics. (2) Moreover, due to the charge balancing effect, the dielectric BS/BC separator homogenizes the electric field/Li+ ion flux at the graphite anode-separator interface, facilitating uniform Li plating and suppressing Li dendrite growth. Consequently, the fast-charge graphite anode with the BS/BC separator shows higher Coulombic efficiency (99.0% vs. 96.9%) and longer cycling lifespan (100 cycles vs. 59 cycles) than that with the polypropylene (PP) separator in the constant-lithiation cycling test at 2 mA cm−2. The high-loading LiFePO4 (15.5 mg cm−2)//graphite (7.5 mg cm−2) full cell with the BS/BC separator exhibits excellent fast charging performance, retaining 70% of its capacity after 500 cycles at a high rate of 2C, which is significantly better than that of the cell with the PP separator (retaining only 27% of its capacity after 500 cycles). More importantly, the thermally stable BS/BC separator effectively elevates the critical temperature and reduces the heat release rate during thermal runaway, thereby significantly enhancing the battery’s safety.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy