Xingxing Liu , Tingting Shao , Juntang Dong , Huirong Kou , Fuchun Zhang , Yuyang Cheng , Jiaming Guo , Shuwei Tian , Kuldeep K. Saxena , Xinghui Liu
{"title":"揭开 Co3O4-ZnO p-n 异质结的神秘面纱,实现卓越的丙酮气体传感检测功能","authors":"Xingxing Liu , Tingting Shao , Juntang Dong , Huirong Kou , Fuchun Zhang , Yuyang Cheng , Jiaming Guo , Shuwei Tian , Kuldeep K. Saxena , Xinghui Liu","doi":"10.1016/j.pnsc.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we synthesized pure ZnO and Co<sub>3</sub>O<sub>4</sub>–ZnO precursors with varied Co, Zn ratios via solvothermal method, and then the precursors were calcined at 400 °C for 2 h in a muffle furnace under air to obtain composites for acetone detection. The structure, morphology, elemental composition, microstructure and chemical state of these materials were systematically studied by various characterization techniques. Additionally, we also evaluated the gas sensing performance of the composites-based sensors, focusing on optimal operating temperature, baseline resistance, repeatability, stability, selectivity, response/recovery time, and resistance under varying relative humidity. The findings reveal that 3 % Co<sub>3</sub>O<sub>4</sub>–ZnO-based sensor exhibit the highest response value to 100 ppm acetone (74), showing an enhancement of approximately 9.3 times compared to the pure ZnO-based sensor (8). Furthermore, the 3 % Co<sub>3</sub>O<sub>4</sub>–ZnO-based sensor demonstrate the advantages of rapid response/recovery times (15 s/2 s), outstanding selectivity, and remarkable stability. The gas sensing mechanism of the composite material is also discussed in detail, which provides insights into the observed enhancement of gas sensing performance. It provides an idea for the follow-up study on gas sensing performance of acetone sensors.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 5","pages":"Pages 990-999"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Co3O4–ZnO p-n heterojunction for superior acetone gas sensing detection\",\"authors\":\"Xingxing Liu , Tingting Shao , Juntang Dong , Huirong Kou , Fuchun Zhang , Yuyang Cheng , Jiaming Guo , Shuwei Tian , Kuldeep K. Saxena , Xinghui Liu\",\"doi\":\"10.1016/j.pnsc.2024.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we synthesized pure ZnO and Co<sub>3</sub>O<sub>4</sub>–ZnO precursors with varied Co, Zn ratios via solvothermal method, and then the precursors were calcined at 400 °C for 2 h in a muffle furnace under air to obtain composites for acetone detection. The structure, morphology, elemental composition, microstructure and chemical state of these materials were systematically studied by various characterization techniques. Additionally, we also evaluated the gas sensing performance of the composites-based sensors, focusing on optimal operating temperature, baseline resistance, repeatability, stability, selectivity, response/recovery time, and resistance under varying relative humidity. The findings reveal that 3 % Co<sub>3</sub>O<sub>4</sub>–ZnO-based sensor exhibit the highest response value to 100 ppm acetone (74), showing an enhancement of approximately 9.3 times compared to the pure ZnO-based sensor (8). Furthermore, the 3 % Co<sub>3</sub>O<sub>4</sub>–ZnO-based sensor demonstrate the advantages of rapid response/recovery times (15 s/2 s), outstanding selectivity, and remarkable stability. The gas sensing mechanism of the composite material is also discussed in detail, which provides insights into the observed enhancement of gas sensing performance. It provides an idea for the follow-up study on gas sensing performance of acetone sensors.</div></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"34 5\",\"pages\":\"Pages 990-999\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124001679\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001679","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unlocking Co3O4–ZnO p-n heterojunction for superior acetone gas sensing detection
In this study, we synthesized pure ZnO and Co3O4–ZnO precursors with varied Co, Zn ratios via solvothermal method, and then the precursors were calcined at 400 °C for 2 h in a muffle furnace under air to obtain composites for acetone detection. The structure, morphology, elemental composition, microstructure and chemical state of these materials were systematically studied by various characterization techniques. Additionally, we also evaluated the gas sensing performance of the composites-based sensors, focusing on optimal operating temperature, baseline resistance, repeatability, stability, selectivity, response/recovery time, and resistance under varying relative humidity. The findings reveal that 3 % Co3O4–ZnO-based sensor exhibit the highest response value to 100 ppm acetone (74), showing an enhancement of approximately 9.3 times compared to the pure ZnO-based sensor (8). Furthermore, the 3 % Co3O4–ZnO-based sensor demonstrate the advantages of rapid response/recovery times (15 s/2 s), outstanding selectivity, and remarkable stability. The gas sensing mechanism of the composite material is also discussed in detail, which provides insights into the observed enhancement of gas sensing performance. It provides an idea for the follow-up study on gas sensing performance of acetone sensors.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.