Nan Yan, Jingjing Li, Tengying Ma, Xuejie Liu*, Yanqiu Du, Fan Wu* and Yutian Zhu*,
{"title":"聚合物系链金纳米粒子自组织成封闭在软乳液液滴中的混合多面体团簇","authors":"Nan Yan, Jingjing Li, Tengying Ma, Xuejie Liu*, Yanqiu Du, Fan Wu* and Yutian Zhu*, ","doi":"10.1021/acsmaterialslett.4c0187010.1021/acsmaterialslett.4c01870","DOIUrl":null,"url":null,"abstract":"<p >Polymer/inorganic polyhedral clusters organized from polymer-tethered inorganic building blocks have received remarkable attention due to their intriguing crystalline frameworks and functionalities. However, the design of polyhedral clusters remains an enormous challenge, and the sizes are normally restricted to the nanometer scale. Here, we report perfect and large polymer/inorganic hybrid Mackay icosahedral clusters up to the micrometer scale by crystallization of polystyrene-tethered gold inorganic nanoparticles (AuNPs@PS) in soft emulsion droplets. A softness parameter is proposed to evaluate the effect of the softness degree on the shape of the final clusters, which can be utilized to control the framework of supraparticles. Interestingly, a variety of Platonic and Johnson polyhedral clusters with tunable symmetries and configurations have been constructed through manipulating the confinement degree and number of AuNPs@PS building blocks in the confined geometry. The polyhedral clusters in our work open up a universal yet efficient strategy for the bottom-up construction of hybrid polyhedral functional materials.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 11","pages":"4955–4961 4955–4961"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Organization of Polymer-Tethered Gold Nanoparticles into Hybrid Polyhedral Clusters Confined in Soft Emulsion Droplets\",\"authors\":\"Nan Yan, Jingjing Li, Tengying Ma, Xuejie Liu*, Yanqiu Du, Fan Wu* and Yutian Zhu*, \",\"doi\":\"10.1021/acsmaterialslett.4c0187010.1021/acsmaterialslett.4c01870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymer/inorganic polyhedral clusters organized from polymer-tethered inorganic building blocks have received remarkable attention due to their intriguing crystalline frameworks and functionalities. However, the design of polyhedral clusters remains an enormous challenge, and the sizes are normally restricted to the nanometer scale. Here, we report perfect and large polymer/inorganic hybrid Mackay icosahedral clusters up to the micrometer scale by crystallization of polystyrene-tethered gold inorganic nanoparticles (AuNPs@PS) in soft emulsion droplets. A softness parameter is proposed to evaluate the effect of the softness degree on the shape of the final clusters, which can be utilized to control the framework of supraparticles. Interestingly, a variety of Platonic and Johnson polyhedral clusters with tunable symmetries and configurations have been constructed through manipulating the confinement degree and number of AuNPs@PS building blocks in the confined geometry. The polyhedral clusters in our work open up a universal yet efficient strategy for the bottom-up construction of hybrid polyhedral functional materials.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"6 11\",\"pages\":\"4955–4961 4955–4961\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01870\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01870","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Organization of Polymer-Tethered Gold Nanoparticles into Hybrid Polyhedral Clusters Confined in Soft Emulsion Droplets
Polymer/inorganic polyhedral clusters organized from polymer-tethered inorganic building blocks have received remarkable attention due to their intriguing crystalline frameworks and functionalities. However, the design of polyhedral clusters remains an enormous challenge, and the sizes are normally restricted to the nanometer scale. Here, we report perfect and large polymer/inorganic hybrid Mackay icosahedral clusters up to the micrometer scale by crystallization of polystyrene-tethered gold inorganic nanoparticles (AuNPs@PS) in soft emulsion droplets. A softness parameter is proposed to evaluate the effect of the softness degree on the shape of the final clusters, which can be utilized to control the framework of supraparticles. Interestingly, a variety of Platonic and Johnson polyhedral clusters with tunable symmetries and configurations have been constructed through manipulating the confinement degree and number of AuNPs@PS building blocks in the confined geometry. The polyhedral clusters in our work open up a universal yet efficient strategy for the bottom-up construction of hybrid polyhedral functional materials.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.