利用可见光进行二氧化碳转化:高度还原的钼酸磷晶体作为强大光催化剂的作用

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yin-Hua Zhu, Jian-Bo Yang, Zhi-Ming Dong, Hua Mei* and Yan Xu*, 
{"title":"利用可见光进行二氧化碳转化:高度还原的钼酸磷晶体作为强大光催化剂的作用","authors":"Yin-Hua Zhu,&nbsp;Jian-Bo Yang,&nbsp;Zhi-Ming Dong,&nbsp;Hua Mei* and Yan Xu*,&nbsp;","doi":"10.1021/acs.inorgchem.4c0381010.1021/acs.inorgchem.4c03810","DOIUrl":null,"url":null,"abstract":"<p >Heterogeneous photocatalysts, characterized by well-defined atomic structures and the capacity for rapid, directional electron transfer, are pivotal in the exploration and development of highly efficient systems for visible-light-driven diluted CO<sub>2</sub> reduction. Herein, we constructed highly reduced phosphomolybdates crystalline materials <b>1</b>–<b>3</b> to help this process, with the formula of [Co<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Co<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][Co(H<sub>7</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>]·8H<sub>2</sub>O (<b>1</b>), [Ni<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][Ni<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Ni(H<sub>2</sub>O)<sub>4</sub>][Ni(H<sub>6</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>]·3H<sub>2</sub>O·2C<sub>2</sub>H<sub>5</sub>OH (<b>2</b>), and [Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>2</sub>][Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>][Zn(H<sub>5</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>] (<b>3</b>) [C<sub>8</sub>N<sub>3</sub>H<sub>7</sub> = 2-(1H-pyrazol-3-yl)pyridine]. Specifically, catalyst <b>1</b> demonstrated a CO production rate of 3276.4 μmol g<sup>–1</sup> h<sup>–1</sup> in an environment with 20% CO<sub>2</sub> concentration, and an impressively elevated rate of 10740.3 μmol g<sup>–1</sup> h<sup>–1</sup> in a pure CO<sub>2</sub> atmosphere. Steady-state photoluminescence spectroscopy revealed that the directional migration of photoelectrons from the Ru complexes to the catalyst was instrumental in enhancing the catalytic activity. This study provides valuable insights into the rational operation of low-concentration CO<sub>2</sub> conversion treatment and the design and synthesis of photocatalysts.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 44","pages":"21303–21312 21303–21312"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Visible Light for CO2 Conversion: The Role of Highly Reduced Phosphomolybdate Crystals as Powerful Photocatalysts\",\"authors\":\"Yin-Hua Zhu,&nbsp;Jian-Bo Yang,&nbsp;Zhi-Ming Dong,&nbsp;Hua Mei* and Yan Xu*,&nbsp;\",\"doi\":\"10.1021/acs.inorgchem.4c0381010.1021/acs.inorgchem.4c03810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Heterogeneous photocatalysts, characterized by well-defined atomic structures and the capacity for rapid, directional electron transfer, are pivotal in the exploration and development of highly efficient systems for visible-light-driven diluted CO<sub>2</sub> reduction. Herein, we constructed highly reduced phosphomolybdates crystalline materials <b>1</b>–<b>3</b> to help this process, with the formula of [Co<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Co<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][Co(H<sub>7</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>]·8H<sub>2</sub>O (<b>1</b>), [Ni<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][Ni<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Ni(H<sub>2</sub>O)<sub>4</sub>][Ni(H<sub>6</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>]·3H<sub>2</sub>O·2C<sub>2</sub>H<sub>5</sub>OH (<b>2</b>), and [Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>2</sub>][Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>][Zn(H<sub>5</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>] (<b>3</b>) [C<sub>8</sub>N<sub>3</sub>H<sub>7</sub> = 2-(1H-pyrazol-3-yl)pyridine]. Specifically, catalyst <b>1</b> demonstrated a CO production rate of 3276.4 μmol g<sup>–1</sup> h<sup>–1</sup> in an environment with 20% CO<sub>2</sub> concentration, and an impressively elevated rate of 10740.3 μmol g<sup>–1</sup> h<sup>–1</sup> in a pure CO<sub>2</sub> atmosphere. Steady-state photoluminescence spectroscopy revealed that the directional migration of photoelectrons from the Ru complexes to the catalyst was instrumental in enhancing the catalytic activity. This study provides valuable insights into the rational operation of low-concentration CO<sub>2</sub> conversion treatment and the design and synthesis of photocatalysts.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"63 44\",\"pages\":\"21303–21312 21303–21312\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03810\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03810","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

异质光催化剂具有明确的原子结构和快速定向电子传递的能力,在探索和开发可见光驱动的稀释二氧化碳高效还原系统中具有举足轻重的作用。在此,我们构建了高度还原的磷钼酸盐晶体材料 1-3 来帮助这一过程,其化学式为 [Co2(C8N3H7)4][Co2(C8N3H7)4(H2O)2][Co(H7P4Mo6O31)2]-8H2O (1)、[Ni2(C8N3H7)4(H2O)2][Ni2(C8N3H7)4][Ni(H2O)4][Ni(H6P4Mo6O31)2]-3H2O-2C2H5OH(2),以及[Zn2(C8N3H7)2][Zn2(C8N3H7)4][Zn2(C8N3H7)2(H2O)2][Zn(H5P4Mo6O31)2](3)[C8N3H7 = 2-(1H-吡唑-3-基)吡啶]。具体而言,催化剂 1 在二氧化碳浓度为 20% 的环境中的二氧化碳生产率为 3276.4 μmol g-1 h-1,而在纯二氧化碳环境中的生产率则高达 10740.3 μmol g-1 h-1,令人印象深刻。稳态光致发光光谱显示,光电子从 Ru 复合物向催化剂的定向迁移有助于提高催化活性。这项研究为低浓度二氧化碳转化处理的合理操作以及光催化剂的设计和合成提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Visible Light for CO2 Conversion: The Role of Highly Reduced Phosphomolybdate Crystals as Powerful Photocatalysts

Harnessing Visible Light for CO2 Conversion: The Role of Highly Reduced Phosphomolybdate Crystals as Powerful Photocatalysts

Heterogeneous photocatalysts, characterized by well-defined atomic structures and the capacity for rapid, directional electron transfer, are pivotal in the exploration and development of highly efficient systems for visible-light-driven diluted CO2 reduction. Herein, we constructed highly reduced phosphomolybdates crystalline materials 13 to help this process, with the formula of [Co2(C8N3H7)4][Co2(C8N3H7)4(H2O)2][Co(H7P4Mo6O31)2]·8H2O (1), [Ni2(C8N3H7)4(H2O)2][Ni2(C8N3H7)4][Ni(H2O)4][Ni(H6P4Mo6O31)2]·3H2O·2C2H5OH (2), and [Zn2(C8N3H7)2][Zn2(C8N3H7)4][Zn2(C8N3H7)2(H2O)2][Zn(H5P4Mo6O31)2] (3) [C8N3H7 = 2-(1H-pyrazol-3-yl)pyridine]. Specifically, catalyst 1 demonstrated a CO production rate of 3276.4 μmol g–1 h–1 in an environment with 20% CO2 concentration, and an impressively elevated rate of 10740.3 μmol g–1 h–1 in a pure CO2 atmosphere. Steady-state photoluminescence spectroscopy revealed that the directional migration of photoelectrons from the Ru complexes to the catalyst was instrumental in enhancing the catalytic activity. This study provides valuable insights into the rational operation of low-concentration CO2 conversion treatment and the design and synthesis of photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信