Yin-Hua Zhu, Jian-Bo Yang, Zhi-Ming Dong, Hua Mei* and Yan Xu*,
{"title":"利用可见光进行二氧化碳转化:高度还原的钼酸磷晶体作为强大光催化剂的作用","authors":"Yin-Hua Zhu, Jian-Bo Yang, Zhi-Ming Dong, Hua Mei* and Yan Xu*, ","doi":"10.1021/acs.inorgchem.4c0381010.1021/acs.inorgchem.4c03810","DOIUrl":null,"url":null,"abstract":"<p >Heterogeneous photocatalysts, characterized by well-defined atomic structures and the capacity for rapid, directional electron transfer, are pivotal in the exploration and development of highly efficient systems for visible-light-driven diluted CO<sub>2</sub> reduction. Herein, we constructed highly reduced phosphomolybdates crystalline materials <b>1</b>–<b>3</b> to help this process, with the formula of [Co<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Co<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][Co(H<sub>7</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>]·8H<sub>2</sub>O (<b>1</b>), [Ni<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][Ni<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Ni(H<sub>2</sub>O)<sub>4</sub>][Ni(H<sub>6</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>]·3H<sub>2</sub>O·2C<sub>2</sub>H<sub>5</sub>OH (<b>2</b>), and [Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>2</sub>][Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>][Zn(H<sub>5</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>] (<b>3</b>) [C<sub>8</sub>N<sub>3</sub>H<sub>7</sub> = 2-(1H-pyrazol-3-yl)pyridine]. Specifically, catalyst <b>1</b> demonstrated a CO production rate of 3276.4 μmol g<sup>–1</sup> h<sup>–1</sup> in an environment with 20% CO<sub>2</sub> concentration, and an impressively elevated rate of 10740.3 μmol g<sup>–1</sup> h<sup>–1</sup> in a pure CO<sub>2</sub> atmosphere. Steady-state photoluminescence spectroscopy revealed that the directional migration of photoelectrons from the Ru complexes to the catalyst was instrumental in enhancing the catalytic activity. This study provides valuable insights into the rational operation of low-concentration CO<sub>2</sub> conversion treatment and the design and synthesis of photocatalysts.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 44","pages":"21303–21312 21303–21312"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Visible Light for CO2 Conversion: The Role of Highly Reduced Phosphomolybdate Crystals as Powerful Photocatalysts\",\"authors\":\"Yin-Hua Zhu, Jian-Bo Yang, Zhi-Ming Dong, Hua Mei* and Yan Xu*, \",\"doi\":\"10.1021/acs.inorgchem.4c0381010.1021/acs.inorgchem.4c03810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Heterogeneous photocatalysts, characterized by well-defined atomic structures and the capacity for rapid, directional electron transfer, are pivotal in the exploration and development of highly efficient systems for visible-light-driven diluted CO<sub>2</sub> reduction. Herein, we constructed highly reduced phosphomolybdates crystalline materials <b>1</b>–<b>3</b> to help this process, with the formula of [Co<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Co<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][Co(H<sub>7</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>]·8H<sub>2</sub>O (<b>1</b>), [Ni<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][Ni<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Ni(H<sub>2</sub>O)<sub>4</sub>][Ni(H<sub>6</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>]·3H<sub>2</sub>O·2C<sub>2</sub>H<sub>5</sub>OH (<b>2</b>), and [Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>2</sub>][Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>4</sub>][Zn<sub>2</sub>(C<sub>8</sub>N<sub>3</sub>H<sub>7</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>][Zn(H<sub>5</sub>P<sub>4</sub>Mo<sub>6</sub>O<sub>31</sub>)<sub>2</sub>] (<b>3</b>) [C<sub>8</sub>N<sub>3</sub>H<sub>7</sub> = 2-(1H-pyrazol-3-yl)pyridine]. Specifically, catalyst <b>1</b> demonstrated a CO production rate of 3276.4 μmol g<sup>–1</sup> h<sup>–1</sup> in an environment with 20% CO<sub>2</sub> concentration, and an impressively elevated rate of 10740.3 μmol g<sup>–1</sup> h<sup>–1</sup> in a pure CO<sub>2</sub> atmosphere. Steady-state photoluminescence spectroscopy revealed that the directional migration of photoelectrons from the Ru complexes to the catalyst was instrumental in enhancing the catalytic activity. This study provides valuable insights into the rational operation of low-concentration CO<sub>2</sub> conversion treatment and the design and synthesis of photocatalysts.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"63 44\",\"pages\":\"21303–21312 21303–21312\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03810\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03810","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Harnessing Visible Light for CO2 Conversion: The Role of Highly Reduced Phosphomolybdate Crystals as Powerful Photocatalysts
Heterogeneous photocatalysts, characterized by well-defined atomic structures and the capacity for rapid, directional electron transfer, are pivotal in the exploration and development of highly efficient systems for visible-light-driven diluted CO2 reduction. Herein, we constructed highly reduced phosphomolybdates crystalline materials 1–3 to help this process, with the formula of [Co2(C8N3H7)4][Co2(C8N3H7)4(H2O)2][Co(H7P4Mo6O31)2]·8H2O (1), [Ni2(C8N3H7)4(H2O)2][Ni2(C8N3H7)4][Ni(H2O)4][Ni(H6P4Mo6O31)2]·3H2O·2C2H5OH (2), and [Zn2(C8N3H7)2][Zn2(C8N3H7)4][Zn2(C8N3H7)2(H2O)2][Zn(H5P4Mo6O31)2] (3) [C8N3H7 = 2-(1H-pyrazol-3-yl)pyridine]. Specifically, catalyst 1 demonstrated a CO production rate of 3276.4 μmol g–1 h–1 in an environment with 20% CO2 concentration, and an impressively elevated rate of 10740.3 μmol g–1 h–1 in a pure CO2 atmosphere. Steady-state photoluminescence spectroscopy revealed that the directional migration of photoelectrons from the Ru complexes to the catalyst was instrumental in enhancing the catalytic activity. This study provides valuable insights into the rational operation of low-concentration CO2 conversion treatment and the design and synthesis of photocatalysts.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.