Jiahao Fang, Weiwei Chen, Shaojie Yuan, Shaofei Yang, Hongguang Meng, Kaitian Mao, Tieqiang Li, Zhengjie Zhu, Xingyu Feng, Huitian Guo, Lianyou Tang, Jinshuai Zhang, Xiang He, Qin Fei, Cao Yu, Jian Zhou, Yi Cui and Jixian Xu*,
{"title":"纵向均匀化中间体促进了包晶石/硅串联太阳能电池的空气处理混合顺序沉积","authors":"Jiahao Fang, Weiwei Chen, Shaojie Yuan, Shaofei Yang, Hongguang Meng, Kaitian Mao, Tieqiang Li, Zhengjie Zhu, Xingyu Feng, Huitian Guo, Lianyou Tang, Jinshuai Zhang, Xiang He, Qin Fei, Cao Yu, Jian Zhou, Yi Cui and Jixian Xu*, ","doi":"10.1021/acsmaterialslett.4c0168710.1021/acsmaterialslett.4c01687","DOIUrl":null,"url":null,"abstract":"<p >Hybrid sequential deposition (HSD) of perovskite thin films is highly desirable for constructing tandem solar cells on textured silicon substrates. However, in the second step of HSD, where the inorganic and organic bilayers undergo thermal interdiffusion to form perovskite, performance is often limited by the need for a very dry environment (inert gas atmosphere or dry air with relative humidity below 10%) and incomplete reactions throughout the film thickness. Here, we demonstrate a longitudinal homogenized intermediate (LHI) strategy that enables the preparation of HSD perovskites under ambient conditions (25 °C, 30%–50% relative humidity). This approach circumvents the formation of a perovskite capping layer, promoting uniform interdiffusion of the organic–inorganic bilayer. As a result, the efficiency of 1.68 eV perovskite solar cells processed in air using HSD improved from 16.42% to 20.65%, leading to an efficiency of 28.55% for textured perovskite/silicon tandem cells.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 11","pages":"5066–5075 5066–5075"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal Homogenized Intermediates Facilitate Air-Processed Hybrid Sequential Deposition of Perovskite/Silicon Tandem Solar Cells\",\"authors\":\"Jiahao Fang, Weiwei Chen, Shaojie Yuan, Shaofei Yang, Hongguang Meng, Kaitian Mao, Tieqiang Li, Zhengjie Zhu, Xingyu Feng, Huitian Guo, Lianyou Tang, Jinshuai Zhang, Xiang He, Qin Fei, Cao Yu, Jian Zhou, Yi Cui and Jixian Xu*, \",\"doi\":\"10.1021/acsmaterialslett.4c0168710.1021/acsmaterialslett.4c01687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hybrid sequential deposition (HSD) of perovskite thin films is highly desirable for constructing tandem solar cells on textured silicon substrates. However, in the second step of HSD, where the inorganic and organic bilayers undergo thermal interdiffusion to form perovskite, performance is often limited by the need for a very dry environment (inert gas atmosphere or dry air with relative humidity below 10%) and incomplete reactions throughout the film thickness. Here, we demonstrate a longitudinal homogenized intermediate (LHI) strategy that enables the preparation of HSD perovskites under ambient conditions (25 °C, 30%–50% relative humidity). This approach circumvents the formation of a perovskite capping layer, promoting uniform interdiffusion of the organic–inorganic bilayer. As a result, the efficiency of 1.68 eV perovskite solar cells processed in air using HSD improved from 16.42% to 20.65%, leading to an efficiency of 28.55% for textured perovskite/silicon tandem cells.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"6 11\",\"pages\":\"5066–5075 5066–5075\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01687\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01687","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Longitudinal Homogenized Intermediates Facilitate Air-Processed Hybrid Sequential Deposition of Perovskite/Silicon Tandem Solar Cells
Hybrid sequential deposition (HSD) of perovskite thin films is highly desirable for constructing tandem solar cells on textured silicon substrates. However, in the second step of HSD, where the inorganic and organic bilayers undergo thermal interdiffusion to form perovskite, performance is often limited by the need for a very dry environment (inert gas atmosphere or dry air with relative humidity below 10%) and incomplete reactions throughout the film thickness. Here, we demonstrate a longitudinal homogenized intermediate (LHI) strategy that enables the preparation of HSD perovskites under ambient conditions (25 °C, 30%–50% relative humidity). This approach circumvents the formation of a perovskite capping layer, promoting uniform interdiffusion of the organic–inorganic bilayer. As a result, the efficiency of 1.68 eV perovskite solar cells processed in air using HSD improved from 16.42% to 20.65%, leading to an efficiency of 28.55% for textured perovskite/silicon tandem cells.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.