Gahyeon Kim, Dongsun Choi, So Young Eom, Eui Dae Jung, Jin Hyeok Lee, Benjamin Rehl, Si Yu Kim, Sjoerd Hoogland, Edward H. Sargent* and Kwang Seob Jeong*,
{"title":"表面调谐碲化银胶体量子点的扩展短波长红外墨水及其红外光探测","authors":"Gahyeon Kim, Dongsun Choi, So Young Eom, Eui Dae Jung, Jin Hyeok Lee, Benjamin Rehl, Si Yu Kim, Sjoerd Hoogland, Edward H. Sargent* and Kwang Seob Jeong*, ","doi":"10.1021/acsmaterialslett.4c0158510.1021/acsmaterialslett.4c01585","DOIUrl":null,"url":null,"abstract":"<p >Wavelength-tunable infrared materials, particularly those excluding regulated substances, are essential for next-generation optoelectronics. Silver telluride (Ag<sub>2</sub>Te) colloidal quantum dots (CQDs) can be a promising alternative to traditional Pb- or Cd-based narrow-band gap semiconductors due to their low toxicity. However, the strong binding affinity of thiol ligands has limited the broader use of Ag<sub>2</sub>Te CQDs, necessitating more versatile surface chemistries. Here, we synthesized Ag<sub>2</sub>Te CQDs passivated with oleylamine, which facilitated various ligand passivation strategies. The weak bonding strength allows the preparation of X-Ag<sub>2</sub>Te CQD (X = Cl, Br, or I ligands) inks, sensitive to 1.1–2.7 μm infrared radiation. Using the CQD inks, we fabricated extended short-wavelength infrared (eSWIR) CQD photodiodes with two different sizes of CQDs. The resulting Ag<sub>2</sub>Te CQD ink-based eSWIR photodiodes exhibited an external quantum efficiency of 16% at 1.7 μm at room temperature, representing the highest value achieved for nontoxic CQD IR detectors at the wavelength.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Short-Wavelength Infrared Ink by Surface-Tuned Silver Telluride Colloidal Quantum Dots and Their Infrared Photodetection\",\"authors\":\"Gahyeon Kim, Dongsun Choi, So Young Eom, Eui Dae Jung, Jin Hyeok Lee, Benjamin Rehl, Si Yu Kim, Sjoerd Hoogland, Edward H. Sargent* and Kwang Seob Jeong*, \",\"doi\":\"10.1021/acsmaterialslett.4c0158510.1021/acsmaterialslett.4c01585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Wavelength-tunable infrared materials, particularly those excluding regulated substances, are essential for next-generation optoelectronics. Silver telluride (Ag<sub>2</sub>Te) colloidal quantum dots (CQDs) can be a promising alternative to traditional Pb- or Cd-based narrow-band gap semiconductors due to their low toxicity. However, the strong binding affinity of thiol ligands has limited the broader use of Ag<sub>2</sub>Te CQDs, necessitating more versatile surface chemistries. Here, we synthesized Ag<sub>2</sub>Te CQDs passivated with oleylamine, which facilitated various ligand passivation strategies. The weak bonding strength allows the preparation of X-Ag<sub>2</sub>Te CQD (X = Cl, Br, or I ligands) inks, sensitive to 1.1–2.7 μm infrared radiation. Using the CQD inks, we fabricated extended short-wavelength infrared (eSWIR) CQD photodiodes with two different sizes of CQDs. The resulting Ag<sub>2</sub>Te CQD ink-based eSWIR photodiodes exhibited an external quantum efficiency of 16% at 1.7 μm at room temperature, representing the highest value achieved for nontoxic CQD IR detectors at the wavelength.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01585\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01585","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Extended Short-Wavelength Infrared Ink by Surface-Tuned Silver Telluride Colloidal Quantum Dots and Their Infrared Photodetection
Wavelength-tunable infrared materials, particularly those excluding regulated substances, are essential for next-generation optoelectronics. Silver telluride (Ag2Te) colloidal quantum dots (CQDs) can be a promising alternative to traditional Pb- or Cd-based narrow-band gap semiconductors due to their low toxicity. However, the strong binding affinity of thiol ligands has limited the broader use of Ag2Te CQDs, necessitating more versatile surface chemistries. Here, we synthesized Ag2Te CQDs passivated with oleylamine, which facilitated various ligand passivation strategies. The weak bonding strength allows the preparation of X-Ag2Te CQD (X = Cl, Br, or I ligands) inks, sensitive to 1.1–2.7 μm infrared radiation. Using the CQD inks, we fabricated extended short-wavelength infrared (eSWIR) CQD photodiodes with two different sizes of CQDs. The resulting Ag2Te CQD ink-based eSWIR photodiodes exhibited an external quantum efficiency of 16% at 1.7 μm at room temperature, representing the highest value achieved for nontoxic CQD IR detectors at the wavelength.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.