Xian Chao , Yirong Fang , Jinjing Wang , Peng Wang , Yiran Dong , Zeyu Lu , Dawei Yin , Ran Shi , Xinfeng Liu , Wen Sun
{"title":"基于病变和脑血流揭示脑卒中固有脑功能网络动态异常及与神经精神症状的相关性","authors":"Xian Chao , Yirong Fang , Jinjing Wang , Peng Wang , Yiran Dong , Zeyu Lu , Dawei Yin , Ran Shi , Xinfeng Liu , Wen Sun","doi":"10.1016/j.pnpbp.2024.111181","DOIUrl":null,"url":null,"abstract":"<div><div>There has been a lack of clarity about the mechanisms of widespread network dysfunctions after stroke. This study aimed to reveal dynamic functional network alternations following stroke based on lesion and brain perfusion. We prospectively enrolled 125 acute ischaemic stroke patients (25 were transient ischemic attack (TIA) patients) and 49 healthy controls with assessed the severity of their depression, anxiety, fatigue, and apathy. We performed dynamic functional network connectivity (DFNC) analysis using the sliding window method. The common static FC biomarkers of stroke were used to define functional states and calculated stroke-specific changes in dynamic indicators. Next, ridge regression (RR) analyses were performed on the dynamic indicators using voxel-wise lesion maps, cerebral blood flow (CBF) difference maps (removal of voxels overlapping lesions) and a combination of both. Mediation analyses were used to characterize the effect of dynamic networks changes on the relationship between lesion, CBF, and neuropsychological scores. Our results showed that DFNC identified three functional states with three dynamic metrics extracted for subsequent analyses. RR analyses show that both CBF and lesions partially explain post-stroke dysfunction (CBF: dynamic indicator1: R<sup>2</sup> = 0.110, <em>p</em> = 0.163; dynamic indicator2: R<sup>2</sup> = 0.277, <em>p</em> = 0.006; dynamic indicator3: R<sup>2</sup> = 0.125, <em>p</em> = 0.121; lesion: dynamic indicator1: R<sup>2</sup> = 0.132, <em>p</em> = 0.109; dynamic indicator2: R<sup>2</sup> = 0.238, <em>p</em> = 0.015; dynamic indicator3: R<sup>2</sup> = 0.131, <em>p</em> = 0.110). In addition, combining the two can improve the efficacy of explanations. Finally, exploratory mediation analyses identified that dynamic functional network changes can mediate between CBF, lesion and neuropsychiatric disorders. Our results suggest that CBF and lesion can be combined to improve the interpretation of dynamic network dysfunction after stroke.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal intrinsic brain functional network dynamics in stroke and correlation with neuropsychiatric symptoms revealed based on lesion and cerebral blood flow\",\"authors\":\"Xian Chao , Yirong Fang , Jinjing Wang , Peng Wang , Yiran Dong , Zeyu Lu , Dawei Yin , Ran Shi , Xinfeng Liu , Wen Sun\",\"doi\":\"10.1016/j.pnpbp.2024.111181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There has been a lack of clarity about the mechanisms of widespread network dysfunctions after stroke. This study aimed to reveal dynamic functional network alternations following stroke based on lesion and brain perfusion. We prospectively enrolled 125 acute ischaemic stroke patients (25 were transient ischemic attack (TIA) patients) and 49 healthy controls with assessed the severity of their depression, anxiety, fatigue, and apathy. We performed dynamic functional network connectivity (DFNC) analysis using the sliding window method. The common static FC biomarkers of stroke were used to define functional states and calculated stroke-specific changes in dynamic indicators. Next, ridge regression (RR) analyses were performed on the dynamic indicators using voxel-wise lesion maps, cerebral blood flow (CBF) difference maps (removal of voxels overlapping lesions) and a combination of both. Mediation analyses were used to characterize the effect of dynamic networks changes on the relationship between lesion, CBF, and neuropsychological scores. Our results showed that DFNC identified three functional states with three dynamic metrics extracted for subsequent analyses. RR analyses show that both CBF and lesions partially explain post-stroke dysfunction (CBF: dynamic indicator1: R<sup>2</sup> = 0.110, <em>p</em> = 0.163; dynamic indicator2: R<sup>2</sup> = 0.277, <em>p</em> = 0.006; dynamic indicator3: R<sup>2</sup> = 0.125, <em>p</em> = 0.121; lesion: dynamic indicator1: R<sup>2</sup> = 0.132, <em>p</em> = 0.109; dynamic indicator2: R<sup>2</sup> = 0.238, <em>p</em> = 0.015; dynamic indicator3: R<sup>2</sup> = 0.131, <em>p</em> = 0.110). In addition, combining the two can improve the efficacy of explanations. Finally, exploratory mediation analyses identified that dynamic functional network changes can mediate between CBF, lesion and neuropsychiatric disorders. Our results suggest that CBF and lesion can be combined to improve the interpretation of dynamic network dysfunction after stroke.</div></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278584624002495\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584624002495","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Abnormal intrinsic brain functional network dynamics in stroke and correlation with neuropsychiatric symptoms revealed based on lesion and cerebral blood flow
There has been a lack of clarity about the mechanisms of widespread network dysfunctions after stroke. This study aimed to reveal dynamic functional network alternations following stroke based on lesion and brain perfusion. We prospectively enrolled 125 acute ischaemic stroke patients (25 were transient ischemic attack (TIA) patients) and 49 healthy controls with assessed the severity of their depression, anxiety, fatigue, and apathy. We performed dynamic functional network connectivity (DFNC) analysis using the sliding window method. The common static FC biomarkers of stroke were used to define functional states and calculated stroke-specific changes in dynamic indicators. Next, ridge regression (RR) analyses were performed on the dynamic indicators using voxel-wise lesion maps, cerebral blood flow (CBF) difference maps (removal of voxels overlapping lesions) and a combination of both. Mediation analyses were used to characterize the effect of dynamic networks changes on the relationship between lesion, CBF, and neuropsychological scores. Our results showed that DFNC identified three functional states with three dynamic metrics extracted for subsequent analyses. RR analyses show that both CBF and lesions partially explain post-stroke dysfunction (CBF: dynamic indicator1: R2 = 0.110, p = 0.163; dynamic indicator2: R2 = 0.277, p = 0.006; dynamic indicator3: R2 = 0.125, p = 0.121; lesion: dynamic indicator1: R2 = 0.132, p = 0.109; dynamic indicator2: R2 = 0.238, p = 0.015; dynamic indicator3: R2 = 0.131, p = 0.110). In addition, combining the two can improve the efficacy of explanations. Finally, exploratory mediation analyses identified that dynamic functional network changes can mediate between CBF, lesion and neuropsychiatric disorders. Our results suggest that CBF and lesion can be combined to improve the interpretation of dynamic network dysfunction after stroke.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.