合成生物学系统揭示了角草 Rubiscos 独特的生物生成和动力学过程。

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhen-Guo Oh, Tanner Ashton Robison, Dan-Hong Loh, Warren Shou Leong Ang, Jediael Ng, Fay-Wei Li, Laura Helen Gunn
{"title":"合成生物学系统揭示了角草 Rubiscos 独特的生物生成和动力学过程。","authors":"Zhen-Guo Oh, Tanner Ashton Robison, Dan-Hong Loh, Warren Shou Leong Ang, Jediael Ng, Fay-Wei Li, Laura Helen Gunn","doi":"10.1016/j.molp.2024.10.013","DOIUrl":null,"url":null,"abstract":"<p><p>Hornworts are the only land plants that employ a pyrenoid to optimize Rubisco's CO<sub>2</sub> fixation. Yet, hornwort Rubisco remains poorly characterized. Here we assemble the hornwort Anthoceros agrestis Rubisco (AaRubisco) using the Arabidopsis thaliana SynBio expression system and observed the formation of stalled intermediates, prompting us to develop a new SynBio system with A. agrestis cognate chaperones. We successfully assembled AaRubisco and Rubisco from three other hornwort species. Unlike A. thaliana Rubisco, AaRubisco assembly is not dependent on RbcX or Raf2. Kinetic characterization reveals that hornwort Rubiscos exhibit a range of catalytic rates (3-10 s<sup>-1</sup>), but with similar affinity (∼30 μM) and specificity (∼70) for CO<sub>2</sub>. In other words, hornwort Rubiscos do not comply with the long held canonical catalytic trade-off observed in other land plants, providing experimental support that Rubisco kinetics may be phylogenetically constrained. Unexpectedly, we observed a 50% increase in AaRubisco catalytic rates when RbcX was removed from our SynBio system, without any reduction in specificity. Structural biology, biochemistry and proteomic analysis suggest that subtle differences in Rubisco large subunit interactions, when RbcX is absent during biogenesis, increases the accessibility of active sites and catalytic turnover rate. This study uncovered a previously unknown Rubisco kinetic parameter space and provides a SynBio chassis to expand the survey of other Rubisco kinetics. Our discovery could thus reshape the approaches for engineering Rubisco with superior kinetics.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique biogenesis and kinetics of hornwort Rubiscos revealed by synthetic biology systems.\",\"authors\":\"Zhen-Guo Oh, Tanner Ashton Robison, Dan-Hong Loh, Warren Shou Leong Ang, Jediael Ng, Fay-Wei Li, Laura Helen Gunn\",\"doi\":\"10.1016/j.molp.2024.10.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hornworts are the only land plants that employ a pyrenoid to optimize Rubisco's CO<sub>2</sub> fixation. Yet, hornwort Rubisco remains poorly characterized. Here we assemble the hornwort Anthoceros agrestis Rubisco (AaRubisco) using the Arabidopsis thaliana SynBio expression system and observed the formation of stalled intermediates, prompting us to develop a new SynBio system with A. agrestis cognate chaperones. We successfully assembled AaRubisco and Rubisco from three other hornwort species. Unlike A. thaliana Rubisco, AaRubisco assembly is not dependent on RbcX or Raf2. Kinetic characterization reveals that hornwort Rubiscos exhibit a range of catalytic rates (3-10 s<sup>-1</sup>), but with similar affinity (∼30 μM) and specificity (∼70) for CO<sub>2</sub>. In other words, hornwort Rubiscos do not comply with the long held canonical catalytic trade-off observed in other land plants, providing experimental support that Rubisco kinetics may be phylogenetically constrained. Unexpectedly, we observed a 50% increase in AaRubisco catalytic rates when RbcX was removed from our SynBio system, without any reduction in specificity. Structural biology, biochemistry and proteomic analysis suggest that subtle differences in Rubisco large subunit interactions, when RbcX is absent during biogenesis, increases the accessibility of active sites and catalytic turnover rate. This study uncovered a previously unknown Rubisco kinetic parameter space and provides a SynBio chassis to expand the survey of other Rubisco kinetics. Our discovery could thus reshape the approaches for engineering Rubisco with superior kinetics.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2024.10.013\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.10.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

角草是唯一利用类焦磷酸优化 Rubisco 固定二氧化碳的陆生植物。然而,角草 Rubisco 的特征仍然不甚明了。在这里,我们使用拟南芥 SynBio 表达系统组装了角草 Anthoceros agrestis Rubisco(AaRubisco),并观察到中间体停滞的形成,这促使我们开发一种带有 Agrestis 同源伴侣蛋白的新 SynBio 系统。我们成功地组装了 AaRubisco 和其他三个角草物种的 Rubisco。与 A. thaliana Rubisco 不同,AaRubisco 的组装不依赖于 RbcX 或 Raf2。动力学特性分析表明,角草 Rubiscos 表现出不同的催化速率(3-10 s-1),但对 CO2 具有相似的亲和力(∼30 μM)和特异性(∼70)。换句话说,角草 Rubiscos 并不符合长期以来在其他陆生植物中观察到的典型催化权衡,这为 Rubisco 动力学可能受系统发育制约提供了实验支持。意想不到的是,当 RbcX 从我们的 SynBio 系统中移除时,我们观察到 AaRubisco 的催化率提高了 50%,而特异性没有降低。结构生物学、生物化学和蛋白质组分析表明,当生物发生过程中没有 RbcX 时,Rubisco 大亚基相互作用的微妙差异会增加活性位点的可及性和催化周转率。这项研究发现了以前未知的 Rubisco 动力学参数空间,并提供了一个 SynBio 底盘来扩大对其他 Rubisco 动力学的研究。因此,我们的发现可能会重塑具有卓越动力学的 Rubisco 工程方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique biogenesis and kinetics of hornwort Rubiscos revealed by synthetic biology systems.

Hornworts are the only land plants that employ a pyrenoid to optimize Rubisco's CO2 fixation. Yet, hornwort Rubisco remains poorly characterized. Here we assemble the hornwort Anthoceros agrestis Rubisco (AaRubisco) using the Arabidopsis thaliana SynBio expression system and observed the formation of stalled intermediates, prompting us to develop a new SynBio system with A. agrestis cognate chaperones. We successfully assembled AaRubisco and Rubisco from three other hornwort species. Unlike A. thaliana Rubisco, AaRubisco assembly is not dependent on RbcX or Raf2. Kinetic characterization reveals that hornwort Rubiscos exhibit a range of catalytic rates (3-10 s-1), but with similar affinity (∼30 μM) and specificity (∼70) for CO2. In other words, hornwort Rubiscos do not comply with the long held canonical catalytic trade-off observed in other land plants, providing experimental support that Rubisco kinetics may be phylogenetically constrained. Unexpectedly, we observed a 50% increase in AaRubisco catalytic rates when RbcX was removed from our SynBio system, without any reduction in specificity. Structural biology, biochemistry and proteomic analysis suggest that subtle differences in Rubisco large subunit interactions, when RbcX is absent during biogenesis, increases the accessibility of active sites and catalytic turnover rate. This study uncovered a previously unknown Rubisco kinetic parameter space and provides a SynBio chassis to expand the survey of other Rubisco kinetics. Our discovery could thus reshape the approaches for engineering Rubisco with superior kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信