{"title":"scImmOmics:人工编辑的单细胞多组学免疫数据资源。","authors":"Yan-Yu Li, Li-Wei Zhou, Feng-Cui Qian, Qiao-Li Fang, Zheng-Min Yu, Ting Cui, Fu-Juan Dong, Fu-Hong Cai, Ting-Ting Yu, Li-Dong Li, Qiu-Yu Wang, Yan-Bing Zhu, Hui-Fang Tang, Bao-Yang Hu, Chun-Quan Li","doi":"10.1093/nar/gkae985","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell sequencing technology has enabled the discovery and characterization of subpopulations of immune cells with unique functions, which is critical for revealing immune responses under healthy or disease conditions. Efforts have been made to collect and curate single-cell RNA sequencing (scRNA-seq) data, yet an immune-specific single-cell multi-omics atlas with harmonized metadata is still lacking. Here, we present scImmOmics (https://bio.liclab.net/scImmOmics/home), a manually curated single-cell multi-omics immune database constructed based on high-quality immune cells with known immune cell labels. Currently, scImmOmics documents >2.9 million cell-type labeled immune cells derived from seven single-cell sequencing technologies, involving 131 immune cell types, 47 tissues and 4 species. To ensure data consistency, we standardized the nomenclature of immune cell types and presented them in a hierarchical tree structure to clearly describe the lineage relationships within the immune system. scImmOmics also provides comprehensive immune regulatory information, including T-cell/B-cell receptor sequencing clonotype information, cell-specific regulatory information (e.g. gene/chromatin accessibility/protein/transcription factor states within known cell types, cell-to-cell communication and co-expression networks) and immune cell responses to cytokines. Collectively, scImmOmics is a comprehensive and valuable platform for unraveling the heterogeneity and diversity of immune cells and elucidating the specific regulatory mechanisms at the single-cell level.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scImmOmics: a manually curated resource of single-cell multi-omics immune data.\",\"authors\":\"Yan-Yu Li, Li-Wei Zhou, Feng-Cui Qian, Qiao-Li Fang, Zheng-Min Yu, Ting Cui, Fu-Juan Dong, Fu-Hong Cai, Ting-Ting Yu, Li-Dong Li, Qiu-Yu Wang, Yan-Bing Zhu, Hui-Fang Tang, Bao-Yang Hu, Chun-Quan Li\",\"doi\":\"10.1093/nar/gkae985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell sequencing technology has enabled the discovery and characterization of subpopulations of immune cells with unique functions, which is critical for revealing immune responses under healthy or disease conditions. Efforts have been made to collect and curate single-cell RNA sequencing (scRNA-seq) data, yet an immune-specific single-cell multi-omics atlas with harmonized metadata is still lacking. Here, we present scImmOmics (https://bio.liclab.net/scImmOmics/home), a manually curated single-cell multi-omics immune database constructed based on high-quality immune cells with known immune cell labels. Currently, scImmOmics documents >2.9 million cell-type labeled immune cells derived from seven single-cell sequencing technologies, involving 131 immune cell types, 47 tissues and 4 species. To ensure data consistency, we standardized the nomenclature of immune cell types and presented them in a hierarchical tree structure to clearly describe the lineage relationships within the immune system. scImmOmics also provides comprehensive immune regulatory information, including T-cell/B-cell receptor sequencing clonotype information, cell-specific regulatory information (e.g. gene/chromatin accessibility/protein/transcription factor states within known cell types, cell-to-cell communication and co-expression networks) and immune cell responses to cytokines. Collectively, scImmOmics is a comprehensive and valuable platform for unraveling the heterogeneity and diversity of immune cells and elucidating the specific regulatory mechanisms at the single-cell level.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae985\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae985","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
scImmOmics: a manually curated resource of single-cell multi-omics immune data.
Single-cell sequencing technology has enabled the discovery and characterization of subpopulations of immune cells with unique functions, which is critical for revealing immune responses under healthy or disease conditions. Efforts have been made to collect and curate single-cell RNA sequencing (scRNA-seq) data, yet an immune-specific single-cell multi-omics atlas with harmonized metadata is still lacking. Here, we present scImmOmics (https://bio.liclab.net/scImmOmics/home), a manually curated single-cell multi-omics immune database constructed based on high-quality immune cells with known immune cell labels. Currently, scImmOmics documents >2.9 million cell-type labeled immune cells derived from seven single-cell sequencing technologies, involving 131 immune cell types, 47 tissues and 4 species. To ensure data consistency, we standardized the nomenclature of immune cell types and presented them in a hierarchical tree structure to clearly describe the lineage relationships within the immune system. scImmOmics also provides comprehensive immune regulatory information, including T-cell/B-cell receptor sequencing clonotype information, cell-specific regulatory information (e.g. gene/chromatin accessibility/protein/transcription factor states within known cell types, cell-to-cell communication and co-expression networks) and immune cell responses to cytokines. Collectively, scImmOmics is a comprehensive and valuable platform for unraveling the heterogeneity and diversity of immune cells and elucidating the specific regulatory mechanisms at the single-cell level.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.