Zhihan Ruan, Fan Lin, Zhenjie Zhang, Jiayue Cao, Wenting Xiang, Xiaoyi Wei, Jian Liu
{"title":"Pairpot:为配对单细胞和空间转录组学量身定制的基于实时套索分析的数据库。","authors":"Zhihan Ruan, Fan Lin, Zhenjie Zhang, Jiayue Cao, Wenting Xiang, Xiaoyi Wei, Jian Liu","doi":"10.1093/nar/gkae986","DOIUrl":null,"url":null,"abstract":"<p><p>Paired single-cell and spatially resolved transcriptomics (SRT) data supplement each other, providing in-depth insights into biological processes and disease mechanisms. Previous SRT databases have limitations in curating sufficient single-cell and SRT pairs (SC-SP pairs) and providing real-time heuristic analysis, which hinder the effort to uncover potential biological insights. Here, we developed Pairpot (http://pairpot.bioxai.cn), a database tailored for paired single-cell and SRT data with real-time heuristic analysis. Pairpot curates 99 high-quality pairs including 1,425,656 spots from 299 datasets, and creates the association networks. It constructs the curated pairs by integrating multiple slices and establishing potential associations between single-cell and SRT data. On this basis, Pairpot adopts semi-supervised learning that enables real-time heuristic analysis for SC-SP pairs where Lasso-View refines the user-selected SRT domains within milliseconds, Pair-View infers cell proportions of spots based on user-selected cell types in real-time and Layer-View displays SRT slices using a 3D hierarchical layout. Experiments demonstrated Pairpot's efficiency in identifying heterogeneous domains and cell proportions.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pairpot: a database with real-time lasso-based analysis tailored for paired single-cell and spatial transcriptomics.\",\"authors\":\"Zhihan Ruan, Fan Lin, Zhenjie Zhang, Jiayue Cao, Wenting Xiang, Xiaoyi Wei, Jian Liu\",\"doi\":\"10.1093/nar/gkae986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Paired single-cell and spatially resolved transcriptomics (SRT) data supplement each other, providing in-depth insights into biological processes and disease mechanisms. Previous SRT databases have limitations in curating sufficient single-cell and SRT pairs (SC-SP pairs) and providing real-time heuristic analysis, which hinder the effort to uncover potential biological insights. Here, we developed Pairpot (http://pairpot.bioxai.cn), a database tailored for paired single-cell and SRT data with real-time heuristic analysis. Pairpot curates 99 high-quality pairs including 1,425,656 spots from 299 datasets, and creates the association networks. It constructs the curated pairs by integrating multiple slices and establishing potential associations between single-cell and SRT data. On this basis, Pairpot adopts semi-supervised learning that enables real-time heuristic analysis for SC-SP pairs where Lasso-View refines the user-selected SRT domains within milliseconds, Pair-View infers cell proportions of spots based on user-selected cell types in real-time and Layer-View displays SRT slices using a 3D hierarchical layout. Experiments demonstrated Pairpot's efficiency in identifying heterogeneous domains and cell proportions.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae986\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae986","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pairpot: a database with real-time lasso-based analysis tailored for paired single-cell and spatial transcriptomics.
Paired single-cell and spatially resolved transcriptomics (SRT) data supplement each other, providing in-depth insights into biological processes and disease mechanisms. Previous SRT databases have limitations in curating sufficient single-cell and SRT pairs (SC-SP pairs) and providing real-time heuristic analysis, which hinder the effort to uncover potential biological insights. Here, we developed Pairpot (http://pairpot.bioxai.cn), a database tailored for paired single-cell and SRT data with real-time heuristic analysis. Pairpot curates 99 high-quality pairs including 1,425,656 spots from 299 datasets, and creates the association networks. It constructs the curated pairs by integrating multiple slices and establishing potential associations between single-cell and SRT data. On this basis, Pairpot adopts semi-supervised learning that enables real-time heuristic analysis for SC-SP pairs where Lasso-View refines the user-selected SRT domains within milliseconds, Pair-View infers cell proportions of spots based on user-selected cell types in real-time and Layer-View displays SRT slices using a 3D hierarchical layout. Experiments demonstrated Pairpot's efficiency in identifying heterogeneous domains and cell proportions.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.