{"title":"新颖的图像分析方法揭示了对粘菌网络适应性微调的新见解。","authors":"Philipp Rosina, Martin Grube","doi":"10.1098/rsos.240950","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel methodology to explore the network dynamics of <i>Physarum polycephalum</i>, an organism celebrated for its remarkable adaptive capabilities. We used two innovative techniques to analyse its growth behaviour and network modifications under stress conditions, including starvation and differential epinephrine exposures. The first method provided a quantitative assessment of growth and exploration over time. The second method provided a detailed examination of vein diameter and contraction patterns, illuminating the physiological adjustments <i>P. polycephalum</i> undergoes in response to environmental challenges. By integrating these approaches, we were able to estimate the total network volume of the organism, with a focus on the normalized estimated volume, unveiling insightful aspects of its structural adaptations. While starvation reduced the volume, indicating a significant structural compromise, low and high epinephrine concentrations maintained a volume-to-area ratio comparable with the control. Determining the fractal dimension of the networks over time revealed a fine-tuning of the network complexity in response to environmental conditions, with significant reductions under stress indicating a constrained network adaptation strategy. These methods, novel in their application to <i>P. polycephalum</i>, provide a framework for future studies and a basis for exploring complex network behaviours with potential applications in bioengineering and adaptive network design.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"240950"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528663/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel image-analytic approach reveals new insights in fine-tuning of slime mould network adaptation.\",\"authors\":\"Philipp Rosina, Martin Grube\",\"doi\":\"10.1098/rsos.240950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a novel methodology to explore the network dynamics of <i>Physarum polycephalum</i>, an organism celebrated for its remarkable adaptive capabilities. We used two innovative techniques to analyse its growth behaviour and network modifications under stress conditions, including starvation and differential epinephrine exposures. The first method provided a quantitative assessment of growth and exploration over time. The second method provided a detailed examination of vein diameter and contraction patterns, illuminating the physiological adjustments <i>P. polycephalum</i> undergoes in response to environmental challenges. By integrating these approaches, we were able to estimate the total network volume of the organism, with a focus on the normalized estimated volume, unveiling insightful aspects of its structural adaptations. While starvation reduced the volume, indicating a significant structural compromise, low and high epinephrine concentrations maintained a volume-to-area ratio comparable with the control. Determining the fractal dimension of the networks over time revealed a fine-tuning of the network complexity in response to environmental conditions, with significant reductions under stress indicating a constrained network adaptation strategy. These methods, novel in their application to <i>P. polycephalum</i>, provide a framework for future studies and a basis for exploring complex network behaviours with potential applications in bioengineering and adaptive network design.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 10\",\"pages\":\"240950\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240950\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240950","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Novel image-analytic approach reveals new insights in fine-tuning of slime mould network adaptation.
This study introduces a novel methodology to explore the network dynamics of Physarum polycephalum, an organism celebrated for its remarkable adaptive capabilities. We used two innovative techniques to analyse its growth behaviour and network modifications under stress conditions, including starvation and differential epinephrine exposures. The first method provided a quantitative assessment of growth and exploration over time. The second method provided a detailed examination of vein diameter and contraction patterns, illuminating the physiological adjustments P. polycephalum undergoes in response to environmental challenges. By integrating these approaches, we were able to estimate the total network volume of the organism, with a focus on the normalized estimated volume, unveiling insightful aspects of its structural adaptations. While starvation reduced the volume, indicating a significant structural compromise, low and high epinephrine concentrations maintained a volume-to-area ratio comparable with the control. Determining the fractal dimension of the networks over time revealed a fine-tuning of the network complexity in response to environmental conditions, with significant reductions under stress indicating a constrained network adaptation strategy. These methods, novel in their application to P. polycephalum, provide a framework for future studies and a basis for exploring complex network behaviours with potential applications in bioengineering and adaptive network design.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.