{"title":"COVID-19突变体动态建模:了解病毒进化与疾病传播动态之间的相互作用。","authors":"Fernando Saldaña, Nico Stollenwerk, Maíra Aguiar","doi":"10.1098/rsos.240919","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding virus mutations is critical for shaping public health interventions. These mutations lead to complex multi-strain dynamics often under-represented in models. Aiming to understand the factors influencing variants' fitness and evolution, we explore several scenarios of virus spreading to gain qualitative insight into the factors dictating which variants ultimately predominate at the population level. To this end, we propose a two-strain stochastic model that accounts for asymptomatic transmission, mutations and the possibility of disease import. We find that variants with milder symptoms are likely to spread faster than those with severe symptoms. This is because severe variants can prompt affected individuals to seek medical help earlier, potentially leading to quicker identification and isolation of cases. However, milder or asymptomatic cases may spread more widely, making it harder to control the spread. Therefore, increased transmissibility of milder variants can still result in higher hospitalizations and fatalities due to widespread infection. The proposed model highlights the interplay between viral evolution and transmission dynamics. Offering a nuanced view of factors influencing variant spread, the model provides a foundation for further investigation into mitigating strategies and public health interventions.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"240919"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529628/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling COVID-19 mutant dynamics: understanding the interplay between viral evolution and disease transmission dynamics.\",\"authors\":\"Fernando Saldaña, Nico Stollenwerk, Maíra Aguiar\",\"doi\":\"10.1098/rsos.240919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding virus mutations is critical for shaping public health interventions. These mutations lead to complex multi-strain dynamics often under-represented in models. Aiming to understand the factors influencing variants' fitness and evolution, we explore several scenarios of virus spreading to gain qualitative insight into the factors dictating which variants ultimately predominate at the population level. To this end, we propose a two-strain stochastic model that accounts for asymptomatic transmission, mutations and the possibility of disease import. We find that variants with milder symptoms are likely to spread faster than those with severe symptoms. This is because severe variants can prompt affected individuals to seek medical help earlier, potentially leading to quicker identification and isolation of cases. However, milder or asymptomatic cases may spread more widely, making it harder to control the spread. Therefore, increased transmissibility of milder variants can still result in higher hospitalizations and fatalities due to widespread infection. The proposed model highlights the interplay between viral evolution and transmission dynamics. Offering a nuanced view of factors influencing variant spread, the model provides a foundation for further investigation into mitigating strategies and public health interventions.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 10\",\"pages\":\"240919\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240919\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240919","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Modelling COVID-19 mutant dynamics: understanding the interplay between viral evolution and disease transmission dynamics.
Understanding virus mutations is critical for shaping public health interventions. These mutations lead to complex multi-strain dynamics often under-represented in models. Aiming to understand the factors influencing variants' fitness and evolution, we explore several scenarios of virus spreading to gain qualitative insight into the factors dictating which variants ultimately predominate at the population level. To this end, we propose a two-strain stochastic model that accounts for asymptomatic transmission, mutations and the possibility of disease import. We find that variants with milder symptoms are likely to spread faster than those with severe symptoms. This is because severe variants can prompt affected individuals to seek medical help earlier, potentially leading to quicker identification and isolation of cases. However, milder or asymptomatic cases may spread more widely, making it harder to control the spread. Therefore, increased transmissibility of milder variants can still result in higher hospitalizations and fatalities due to widespread infection. The proposed model highlights the interplay between viral evolution and transmission dynamics. Offering a nuanced view of factors influencing variant spread, the model provides a foundation for further investigation into mitigating strategies and public health interventions.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.