解码皮层时序--比较不同皮层组织方案的影响

IF 4.7 2区 医学 Q1 NEUROIMAGING
Falko Mecklenbrauck , Jorge Sepulcre , Jana Fehring , Ricarda I. Schubotz
{"title":"解码皮层时序--比较不同皮层组织方案的影响","authors":"Falko Mecklenbrauck ,&nbsp;Jorge Sepulcre ,&nbsp;Jana Fehring ,&nbsp;Ricarda I. Schubotz","doi":"10.1016/j.neuroimage.2024.120914","DOIUrl":null,"url":null,"abstract":"<div><div>The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"303 ","pages":"Article 120914"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding cortical chronotopy—Comparing the influence of different cortical organizational schemes\",\"authors\":\"Falko Mecklenbrauck ,&nbsp;Jorge Sepulcre ,&nbsp;Jana Fehring ,&nbsp;Ricarda I. Schubotz\",\"doi\":\"10.1016/j.neuroimage.2024.120914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"303 \",\"pages\":\"Article 120914\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811924004117\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924004117","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

大脑的内在时间尺度多种多样,这使我们能够感知具有不同时间持续性的刺激。本研究旨在揭示这些变化背后的大脑皮层组织方案,揭示处理各种感官体验的神经架构。我们收集了 47 人的静息态 fMRI、任务-fMRI 和扩散加权成像数据。基于这些数据,我们提取了六种组织方案:(1)结构性富俱乐部(RC)架构,该架构显示了连接组的同步性;(2)结构性多样化俱乐部架构,该架构是基于网络模块结构的 RC 架构的替代方案;(3)功能性单模态到多模态梯度,该梯度反映在广泛的结构和功能特征中;以及(4)空间性后部/外侧到前部/内侧梯度,该梯度建立在认知控制的分层水平上。此外,我们还探讨了(5)中心性结构图理论测量和(6)细胞结构差异的影响。利用贝叶斯模型比较法,我们对比了这些组织方案对(1)内在静息态时间尺度和(2)涉及分层嵌套数字序列任务的受试者间相关性(ISC)的影响。正如预期的那样,在结构网络中心、由功能和空间梯度定义的分层较高区域以及较厚的皮层区域,静息状态时标较慢。ISC 分析表明,更高的皮层区域会受到时间上更持久的刺激。最后,通过模型比较发现,单模态到多模态梯度是解释任务和休息时序的最佳组织方案。未来的研究应该探索形成这种梯度的微观结构特征,阐明我们的大脑是如何在不同的处理模式中适应和进化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding cortical chronotopy—Comparing the influence of different cortical organizational schemes
The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信