{"title":"发现新型双特异性酪氨酸磷酸化调节激酶 1A (DYRK1A) 抑制剂及其对 tau 磷酸化和淀粉样蛋白-β形成的影响","authors":"Huang-Ju Tu, Min-Wu Chao, Cheng-Chung Lee, Chao-Shiang Peng, Yi-Wen Wu, Tony Eight Lin, Yu-Wei Chang, Shih-Chung Yen, Kai-Cheng Hsu, Shiow-Lin Pan, Wei-Chun HuangFu","doi":"10.1080/14756366.2024.2418470","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-specificity tyrosine-regulated kinase 1 A (DYRK1A) is crucial in neurogenesis, synaptogenesis, and neuronal functions. Its dysregulation is linked to neurodegenerative disorders like Down syndrome and Alzheimer's disease. Although the development of DYRK1A inhibitors has significantly advanced in recent years, the selectivity of these drugs remains a critical challenge, potentially impeding further progress. In this study, we utilised structure-based virtual screening (SBVS) from NCI library to discover novel DYRK1A inhibitors. The top-ranked compounds were then validated through enzymatic assays to assess their efficacy towards DYRK1A. Among them, NSC361563 emerged as a potent and selective DYRK1A inhibitor. It was shown to decrease tau phosphorylation at multiple sites, thereby enhancing tubulin stability. Moreover, NSC361563 diminished the formation of amyloid β and offered neuroprotective benefits against amyloid β-induced toxicity. Our research highlights the critical role of selective DYRK1A inhibitors in treating neurodegenerative diseases and presents a promising starting point for the development of targeted therapies.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovering a novel dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) inhibitor and its impact on tau phosphorylation and amyloid-β formation.\",\"authors\":\"Huang-Ju Tu, Min-Wu Chao, Cheng-Chung Lee, Chao-Shiang Peng, Yi-Wen Wu, Tony Eight Lin, Yu-Wei Chang, Shih-Chung Yen, Kai-Cheng Hsu, Shiow-Lin Pan, Wei-Chun HuangFu\",\"doi\":\"10.1080/14756366.2024.2418470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dual-specificity tyrosine-regulated kinase 1 A (DYRK1A) is crucial in neurogenesis, synaptogenesis, and neuronal functions. Its dysregulation is linked to neurodegenerative disorders like Down syndrome and Alzheimer's disease. Although the development of DYRK1A inhibitors has significantly advanced in recent years, the selectivity of these drugs remains a critical challenge, potentially impeding further progress. In this study, we utilised structure-based virtual screening (SBVS) from NCI library to discover novel DYRK1A inhibitors. The top-ranked compounds were then validated through enzymatic assays to assess their efficacy towards DYRK1A. Among them, NSC361563 emerged as a potent and selective DYRK1A inhibitor. It was shown to decrease tau phosphorylation at multiple sites, thereby enhancing tubulin stability. Moreover, NSC361563 diminished the formation of amyloid β and offered neuroprotective benefits against amyloid β-induced toxicity. Our research highlights the critical role of selective DYRK1A inhibitors in treating neurodegenerative diseases and presents a promising starting point for the development of targeted therapies.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2024.2418470\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2418470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovering a novel dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) inhibitor and its impact on tau phosphorylation and amyloid-β formation.
Dual-specificity tyrosine-regulated kinase 1 A (DYRK1A) is crucial in neurogenesis, synaptogenesis, and neuronal functions. Its dysregulation is linked to neurodegenerative disorders like Down syndrome and Alzheimer's disease. Although the development of DYRK1A inhibitors has significantly advanced in recent years, the selectivity of these drugs remains a critical challenge, potentially impeding further progress. In this study, we utilised structure-based virtual screening (SBVS) from NCI library to discover novel DYRK1A inhibitors. The top-ranked compounds were then validated through enzymatic assays to assess their efficacy towards DYRK1A. Among them, NSC361563 emerged as a potent and selective DYRK1A inhibitor. It was shown to decrease tau phosphorylation at multiple sites, thereby enhancing tubulin stability. Moreover, NSC361563 diminished the formation of amyloid β and offered neuroprotective benefits against amyloid β-induced toxicity. Our research highlights the critical role of selective DYRK1A inhibitors in treating neurodegenerative diseases and presents a promising starting point for the development of targeted therapies.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.