Nawel Kaddour, Farah Benyettou, Kawtar Moulai, Abdelouahab Mebarki, Rose Ghemrawi, Zine-Charaf Amir, Hafida Merzouk, Ali Trabolsi, Nassima Amel Mokhtari-Soulimane
{"title":"口服纳米胶囊胰岛素在糖尿病大鼠模型中降低氧化应激和增强组织完整性的功效","authors":"Nawel Kaddour, Farah Benyettou, Kawtar Moulai, Abdelouahab Mebarki, Rose Ghemrawi, Zine-Charaf Amir, Hafida Merzouk, Ali Trabolsi, Nassima Amel Mokhtari-Soulimane","doi":"10.2147/IJN.S468756","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diabetes mellitus, a chronic metabolic disorder, leads to systemic organ damage characterized by oxidative stress and structural alterations, contributing to increased morbidity and mortality. Traditional subcutaneous insulin therapy, while managing hyperglycemia, often falls short in addressing the oxidative damage and preventing organ-specific complications. This study evaluates the therapeutic efficacy of a novel oral nanoparticle-mediated insulin (nCOF/Insulin) against these diabetes-induced changes, comparing it with traditional subcutaneous insulin in a streptozotocin (STZ)-induced diabetic rat model.</p><p><strong>Methods: </strong>We induced diabetes in Wistar rats, dividing them into four groups: standard control, diabetic control, diabetic treated with subcutaneous insulin, and diabetic treated with oral nanoparticle-mediated insulin (nCOF/Insulin). Assessments included organ and body weights, histopathological examinations, and oxidative stress markers (MDA and PCOs) across various organs, including the brain, muscle, intestine, spleen, heart, liver, kidney, and adrenal glands. Additionally, we evaluated antioxidant parameters (GSH and catalase) and conducted immunohistochemical analysis of E-cadherin to assess intestinal integrity.</p><p><strong>Results: </strong>Our findings reveal that STZ-induced diabetes significantly impacts organ health, with subcutaneous insulin providing limited mitigation and, in some cases, exacerbating oxidative stress. Conversely, oral nCOF/Insulin treatment effectively restored organ and body weights, reduced oxidative stress markers, and mitigated histological damage. This suggests that oral nCOF/Insulin not only offers superior glycemic control but also addresses the underlying oxidative stress.</p><p><strong>Conclusion: </strong>nCOF/Insulin emerges as a promising treatment for diabetes, with the potential to improve patient quality of life by ameliorating oxidative stress and preventing organ-specific complications. This study underscores the need for further investigation into the long-term effects and mechanisms of action of oral nCOF/Insulin, aiming to revolutionize diabetes management and treatment strategies.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529609/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficacy of Oral Nanoparticle-Encapsulated Insulin in Reducing Oxidative Stress and Enhancing Tissue Integrity in a Diabetic Rat Model.\",\"authors\":\"Nawel Kaddour, Farah Benyettou, Kawtar Moulai, Abdelouahab Mebarki, Rose Ghemrawi, Zine-Charaf Amir, Hafida Merzouk, Ali Trabolsi, Nassima Amel Mokhtari-Soulimane\",\"doi\":\"10.2147/IJN.S468756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Diabetes mellitus, a chronic metabolic disorder, leads to systemic organ damage characterized by oxidative stress and structural alterations, contributing to increased morbidity and mortality. Traditional subcutaneous insulin therapy, while managing hyperglycemia, often falls short in addressing the oxidative damage and preventing organ-specific complications. This study evaluates the therapeutic efficacy of a novel oral nanoparticle-mediated insulin (nCOF/Insulin) against these diabetes-induced changes, comparing it with traditional subcutaneous insulin in a streptozotocin (STZ)-induced diabetic rat model.</p><p><strong>Methods: </strong>We induced diabetes in Wistar rats, dividing them into four groups: standard control, diabetic control, diabetic treated with subcutaneous insulin, and diabetic treated with oral nanoparticle-mediated insulin (nCOF/Insulin). Assessments included organ and body weights, histopathological examinations, and oxidative stress markers (MDA and PCOs) across various organs, including the brain, muscle, intestine, spleen, heart, liver, kidney, and adrenal glands. Additionally, we evaluated antioxidant parameters (GSH and catalase) and conducted immunohistochemical analysis of E-cadherin to assess intestinal integrity.</p><p><strong>Results: </strong>Our findings reveal that STZ-induced diabetes significantly impacts organ health, with subcutaneous insulin providing limited mitigation and, in some cases, exacerbating oxidative stress. Conversely, oral nCOF/Insulin treatment effectively restored organ and body weights, reduced oxidative stress markers, and mitigated histological damage. This suggests that oral nCOF/Insulin not only offers superior glycemic control but also addresses the underlying oxidative stress.</p><p><strong>Conclusion: </strong>nCOF/Insulin emerges as a promising treatment for diabetes, with the potential to improve patient quality of life by ameliorating oxidative stress and preventing organ-specific complications. This study underscores the need for further investigation into the long-term effects and mechanisms of action of oral nCOF/Insulin, aiming to revolutionize diabetes management and treatment strategies.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529609/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S468756\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S468756","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Efficacy of Oral Nanoparticle-Encapsulated Insulin in Reducing Oxidative Stress and Enhancing Tissue Integrity in a Diabetic Rat Model.
Introduction: Diabetes mellitus, a chronic metabolic disorder, leads to systemic organ damage characterized by oxidative stress and structural alterations, contributing to increased morbidity and mortality. Traditional subcutaneous insulin therapy, while managing hyperglycemia, often falls short in addressing the oxidative damage and preventing organ-specific complications. This study evaluates the therapeutic efficacy of a novel oral nanoparticle-mediated insulin (nCOF/Insulin) against these diabetes-induced changes, comparing it with traditional subcutaneous insulin in a streptozotocin (STZ)-induced diabetic rat model.
Methods: We induced diabetes in Wistar rats, dividing them into four groups: standard control, diabetic control, diabetic treated with subcutaneous insulin, and diabetic treated with oral nanoparticle-mediated insulin (nCOF/Insulin). Assessments included organ and body weights, histopathological examinations, and oxidative stress markers (MDA and PCOs) across various organs, including the brain, muscle, intestine, spleen, heart, liver, kidney, and adrenal glands. Additionally, we evaluated antioxidant parameters (GSH and catalase) and conducted immunohistochemical analysis of E-cadherin to assess intestinal integrity.
Results: Our findings reveal that STZ-induced diabetes significantly impacts organ health, with subcutaneous insulin providing limited mitigation and, in some cases, exacerbating oxidative stress. Conversely, oral nCOF/Insulin treatment effectively restored organ and body weights, reduced oxidative stress markers, and mitigated histological damage. This suggests that oral nCOF/Insulin not only offers superior glycemic control but also addresses the underlying oxidative stress.
Conclusion: nCOF/Insulin emerges as a promising treatment for diabetes, with the potential to improve patient quality of life by ameliorating oxidative stress and preventing organ-specific complications. This study underscores the need for further investigation into the long-term effects and mechanisms of action of oral nCOF/Insulin, aiming to revolutionize diabetes management and treatment strategies.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.