Mayra Hoppstädter , Kevin Linka , Ellen Kuhl , Marion Schmicke , Markus Böl
{"title":"机器学习揭示了大脑年龄与力学之间的相关性。","authors":"Mayra Hoppstädter , Kevin Linka , Ellen Kuhl , Marion Schmicke , Markus Böl","doi":"10.1016/j.actbio.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Our brain undergoes significant micro- and macroscopic changes throughout its life cycle. It is therefore crucial to understand the effect of aging on the mechanical properties of the brain in order to develop accurate personalized simulations and diagnostic tools. Here we systematically probed the mechanical behavior of <span><math><mrow><mi>n</mi><mo>=</mo><mn>439</mn></mrow></math></span> brain tissue samples in tension and compression, in different anatomical regions, for different axon orientations, across five age groups. We used Bayesian statistics to characterize the relation between brain age and mechanical properties and quantify uncertainties. Our results, based on our experimental data and material parameters for the isotropic Ogden and the anisotropic Gasser-Ogden-Holzapfel models, reveal a non-linear relationship between age and mechanics across the life cycle of the porcine brain. Both tensile and compressive shear moduli reached peak values ranging from 0.4–1.0 kPa in tension to 0.16–0.32 kPa in compression at three years of age. Anisotropy was most pronounced at six months, and then decreased. These results represent an important step in understanding age-dependent changes in the mechanical properties of brain tissue and provide the scientific basis for more accurate and realistic computational brain simulations.</div></div><div><h3>Statement of significance</h3><div>In this paper, we investigate the age-dependent mechanical properties of brain tissue based on different deformation modes, anatomical regions, and axon orientations. Hierarchical Bayesian modeling was used to identify isotropic and anisotropic material parameters. The study reveals a nonlinear relationship between shear modulus, degree of anisotropy, and tension-compression asymmetry over the life cycle of the brain. By demonstrating the non-linearity of these relationships, the study fills a significant knowledge gap in current research. This work is a fundamental step in accurately characterizing the complex relationship between brain aging and mechanical properties.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"190 ","pages":"Pages 362-378"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning reveals correlations between brain age and mechanics\",\"authors\":\"Mayra Hoppstädter , Kevin Linka , Ellen Kuhl , Marion Schmicke , Markus Böl\",\"doi\":\"10.1016/j.actbio.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our brain undergoes significant micro- and macroscopic changes throughout its life cycle. It is therefore crucial to understand the effect of aging on the mechanical properties of the brain in order to develop accurate personalized simulations and diagnostic tools. Here we systematically probed the mechanical behavior of <span><math><mrow><mi>n</mi><mo>=</mo><mn>439</mn></mrow></math></span> brain tissue samples in tension and compression, in different anatomical regions, for different axon orientations, across five age groups. We used Bayesian statistics to characterize the relation between brain age and mechanical properties and quantify uncertainties. Our results, based on our experimental data and material parameters for the isotropic Ogden and the anisotropic Gasser-Ogden-Holzapfel models, reveal a non-linear relationship between age and mechanics across the life cycle of the porcine brain. Both tensile and compressive shear moduli reached peak values ranging from 0.4–1.0 kPa in tension to 0.16–0.32 kPa in compression at three years of age. Anisotropy was most pronounced at six months, and then decreased. These results represent an important step in understanding age-dependent changes in the mechanical properties of brain tissue and provide the scientific basis for more accurate and realistic computational brain simulations.</div></div><div><h3>Statement of significance</h3><div>In this paper, we investigate the age-dependent mechanical properties of brain tissue based on different deformation modes, anatomical regions, and axon orientations. Hierarchical Bayesian modeling was used to identify isotropic and anisotropic material parameters. The study reveals a nonlinear relationship between shear modulus, degree of anisotropy, and tension-compression asymmetry over the life cycle of the brain. By demonstrating the non-linearity of these relationships, the study fills a significant knowledge gap in current research. This work is a fundamental step in accurately characterizing the complex relationship between brain aging and mechanical properties.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"190 \",\"pages\":\"Pages 362-378\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706124005865\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124005865","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Machine learning reveals correlations between brain age and mechanics
Our brain undergoes significant micro- and macroscopic changes throughout its life cycle. It is therefore crucial to understand the effect of aging on the mechanical properties of the brain in order to develop accurate personalized simulations and diagnostic tools. Here we systematically probed the mechanical behavior of brain tissue samples in tension and compression, in different anatomical regions, for different axon orientations, across five age groups. We used Bayesian statistics to characterize the relation between brain age and mechanical properties and quantify uncertainties. Our results, based on our experimental data and material parameters for the isotropic Ogden and the anisotropic Gasser-Ogden-Holzapfel models, reveal a non-linear relationship between age and mechanics across the life cycle of the porcine brain. Both tensile and compressive shear moduli reached peak values ranging from 0.4–1.0 kPa in tension to 0.16–0.32 kPa in compression at three years of age. Anisotropy was most pronounced at six months, and then decreased. These results represent an important step in understanding age-dependent changes in the mechanical properties of brain tissue and provide the scientific basis for more accurate and realistic computational brain simulations.
Statement of significance
In this paper, we investigate the age-dependent mechanical properties of brain tissue based on different deformation modes, anatomical regions, and axon orientations. Hierarchical Bayesian modeling was used to identify isotropic and anisotropic material parameters. The study reveals a nonlinear relationship between shear modulus, degree of anisotropy, and tension-compression asymmetry over the life cycle of the brain. By demonstrating the non-linearity of these relationships, the study fills a significant knowledge gap in current research. This work is a fundamental step in accurately characterizing the complex relationship between brain aging and mechanical properties.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.