{"title":"建立成人不可或缺氨基酸需求动态模型:氧化氨基酸损失的因子估算。","authors":"Carlene S Starck, Robert R Wolfe, Paul J Moughan","doi":"10.1016/j.tjnut.2024.10.049","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Consensus regarding the required intake of indispensable amino acids (IDAAs) and protein [representing total amino acids (AAs)] in the adult is lacking. Oxidation is a major, although not exclusive, source of IDAA loss in humans body and a primary factor determining requirements; a quantitative understanding of oxidative IDAA losses is required.</p><p><strong>Objectives: </strong>This study aimed to develop a factorial diurnal model of total oxidative IDAA and protein losses in the adult human.</p><p><strong>Methods: </strong>A factorial diurnal model of oxidative losses of protein and each IDAA at maintenance was developed by estimating the magnitude and variability of sources of oxidative loss from existing literature: inevitable catabolism (constitutive oxidation of each absorbed dietary AA), and protein turnover in the postprandial and postabsorptive states. Total oxidative losses were calculated by summing individual losses, validated against published independent nitrogen balance data and compared with current IDAA requirements.</p><p><strong>Results: </strong>The factorial model predicted minimum oxidative total AA losses of 390 ± 60 mg/kg BW/d, 59% of the estimated average requirement for protein. Inevitable AA oxidation and oxidation associated with postabsorptive protein turnover were the major sources of the oxidative loss for protein, at 40% and 44%, respectively. Summed oxidative IDAA losses ranged from 64% (isoleucine) to 91% (tryptophan) of current requirements. Total oxidative losses predicted by the model were significant predictors of actual experimental oxidative losses obtained by nitrogen balance (R<sup>2</sup> = 0.66; P = 0.049).</p><p><strong>Conclusions: </strong>The use of a factorial model for estimation of minimum IDAA and protein oxidative losses in the adult human provides an essential starting point for an updated understanding of protein and IDAA requirements. Further iterations of the model will estimate total protein and IDAA requirements, and account for variations in dietary protein quantity and quality, as well as different populations and physiologic states. Additional data, especially for inevitable oxidation in humans, and particularly with respect to individual IDAAs, are needed.</p>","PeriodicalId":16620,"journal":{"name":"Journal of Nutrition","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a Dynamic Model of Indispensable Amino Acid Requirements of the Adult Human: A Factorial Estimate of Oxidative Amino Acid Losses.\",\"authors\":\"Carlene S Starck, Robert R Wolfe, Paul J Moughan\",\"doi\":\"10.1016/j.tjnut.2024.10.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Consensus regarding the required intake of indispensable amino acids (IDAAs) and protein [representing total amino acids (AAs)] in the adult is lacking. Oxidation is a major, although not exclusive, source of IDAA loss in humans body and a primary factor determining requirements; a quantitative understanding of oxidative IDAA losses is required.</p><p><strong>Objectives: </strong>This study aimed to develop a factorial diurnal model of total oxidative IDAA and protein losses in the adult human.</p><p><strong>Methods: </strong>A factorial diurnal model of oxidative losses of protein and each IDAA at maintenance was developed by estimating the magnitude and variability of sources of oxidative loss from existing literature: inevitable catabolism (constitutive oxidation of each absorbed dietary AA), and protein turnover in the postprandial and postabsorptive states. Total oxidative losses were calculated by summing individual losses, validated against published independent nitrogen balance data and compared with current IDAA requirements.</p><p><strong>Results: </strong>The factorial model predicted minimum oxidative total AA losses of 390 ± 60 mg/kg BW/d, 59% of the estimated average requirement for protein. Inevitable AA oxidation and oxidation associated with postabsorptive protein turnover were the major sources of the oxidative loss for protein, at 40% and 44%, respectively. Summed oxidative IDAA losses ranged from 64% (isoleucine) to 91% (tryptophan) of current requirements. Total oxidative losses predicted by the model were significant predictors of actual experimental oxidative losses obtained by nitrogen balance (R<sup>2</sup> = 0.66; P = 0.049).</p><p><strong>Conclusions: </strong>The use of a factorial model for estimation of minimum IDAA and protein oxidative losses in the adult human provides an essential starting point for an updated understanding of protein and IDAA requirements. Further iterations of the model will estimate total protein and IDAA requirements, and account for variations in dietary protein quantity and quality, as well as different populations and physiologic states. Additional data, especially for inevitable oxidation in humans, and particularly with respect to individual IDAAs, are needed.</p>\",\"PeriodicalId\":16620,\"journal\":{\"name\":\"Journal of Nutrition\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tjnut.2024.10.049\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tjnut.2024.10.049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Toward a Dynamic Model of Indispensable Amino Acid Requirements of the Adult Human: A Factorial Estimate of Oxidative Amino Acid Losses.
Background: Consensus regarding the required intake of indispensable amino acids (IDAAs) and protein [representing total amino acids (AAs)] in the adult is lacking. Oxidation is a major, although not exclusive, source of IDAA loss in humans body and a primary factor determining requirements; a quantitative understanding of oxidative IDAA losses is required.
Objectives: This study aimed to develop a factorial diurnal model of total oxidative IDAA and protein losses in the adult human.
Methods: A factorial diurnal model of oxidative losses of protein and each IDAA at maintenance was developed by estimating the magnitude and variability of sources of oxidative loss from existing literature: inevitable catabolism (constitutive oxidation of each absorbed dietary AA), and protein turnover in the postprandial and postabsorptive states. Total oxidative losses were calculated by summing individual losses, validated against published independent nitrogen balance data and compared with current IDAA requirements.
Results: The factorial model predicted minimum oxidative total AA losses of 390 ± 60 mg/kg BW/d, 59% of the estimated average requirement for protein. Inevitable AA oxidation and oxidation associated with postabsorptive protein turnover were the major sources of the oxidative loss for protein, at 40% and 44%, respectively. Summed oxidative IDAA losses ranged from 64% (isoleucine) to 91% (tryptophan) of current requirements. Total oxidative losses predicted by the model were significant predictors of actual experimental oxidative losses obtained by nitrogen balance (R2 = 0.66; P = 0.049).
Conclusions: The use of a factorial model for estimation of minimum IDAA and protein oxidative losses in the adult human provides an essential starting point for an updated understanding of protein and IDAA requirements. Further iterations of the model will estimate total protein and IDAA requirements, and account for variations in dietary protein quantity and quality, as well as different populations and physiologic states. Additional data, especially for inevitable oxidation in humans, and particularly with respect to individual IDAAs, are needed.
期刊介绍:
The Journal of Nutrition (JN/J Nutr) publishes peer-reviewed original research papers covering all aspects of experimental nutrition in humans and other animal species; special articles such as reviews and biographies of prominent nutrition scientists; and issues, opinions, and commentaries on controversial issues in nutrition. Supplements are frequently published to provide extended discussion of topics of special interest.