{"title":"纳米结构脂质载体包裹α-芒果苷的睾丸内给药临床试验:对猫科动物生殖健康的安全性和有效性。","authors":"Shanaporn Leelakajornkit , Chatwalee Boonthum , Panthipa Borikkappakul , Teerapong Yata , Jakarwan Yostawonkul , Suppawiwat Ponglowhapan","doi":"10.1016/j.theriogenology.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>Surgical castration is a primary method for controlling male fertility, but it is impractical for large-scale population control of stray animals. Developing nanoparticle-mediated sterilants that induce cell apoptosis rather than necrosis is a complex and promising area of research. This study aimed to investigate the impact of intratesticular administration of alpha-mangostin encapsulated in nanostructured lipid carriers (AM-NLC) on testicular changes and any associated adverse effects over a 168-day observation period. Thirty-two healthy mature tomcats were enrolled. None of the cats treated with either AM-NLC (n = 28) or blank NLC (n = 4) exhibited noticeable complications related to pain or stress throughout the study, as assessed by clinical examination, blood profiles, and serum amyloid A levels. Histopathological analysis of AM-NLC treated cats revealed seminiferous epithelium degeneration, leading to defective tubules. Key findings included germ cell depletion, disorganized spermatogenic cells without spermatids in certain areas, apoptotic bodies, and intracytoplasmic vacuolization. The intertubular compartment showed no signs of inflammation, hyalinization, fibrosis, or necrosis. Despite widespread degeneration, some normal tubules were present in focal areas. The severity score of seminiferous tubule degeneration significantly increased from day 56 onwards (P < 0.05), suggesting a gradual and progressive compromise of the seminiferous epithelium. In contrast, testes from the blank-NLC group exhibited normal spermatogenesis. Overall, there were no significant changes in the volume of dissected testes, serum testosterone levels, or apoptotic index in AM-NLC-treated cats (P > 0.05). In conclusion, this study represents the first <em>in vivo</em> investigation of apoptotic-inducing agents as a novel nanomedicine-based antifertility compound for non-surgical castration in male animals. While the AM-NLC formulation proved safe for intratesticular administration, it failed to induce infertility in cats, as epididymal spermatozoa persisted throughout the study. Further research into alternative apoptosis-inducing nanomedicine sterilants remains both essential and challenging.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"231 ","pages":"Pages 240-249"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical trials of intratesticular administration of nanostructured lipid carriers encapsulated alpha-mangostin: Safety and efficacy on feline reproductive health\",\"authors\":\"Shanaporn Leelakajornkit , Chatwalee Boonthum , Panthipa Borikkappakul , Teerapong Yata , Jakarwan Yostawonkul , Suppawiwat Ponglowhapan\",\"doi\":\"10.1016/j.theriogenology.2024.10.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surgical castration is a primary method for controlling male fertility, but it is impractical for large-scale population control of stray animals. Developing nanoparticle-mediated sterilants that induce cell apoptosis rather than necrosis is a complex and promising area of research. This study aimed to investigate the impact of intratesticular administration of alpha-mangostin encapsulated in nanostructured lipid carriers (AM-NLC) on testicular changes and any associated adverse effects over a 168-day observation period. Thirty-two healthy mature tomcats were enrolled. None of the cats treated with either AM-NLC (n = 28) or blank NLC (n = 4) exhibited noticeable complications related to pain or stress throughout the study, as assessed by clinical examination, blood profiles, and serum amyloid A levels. Histopathological analysis of AM-NLC treated cats revealed seminiferous epithelium degeneration, leading to defective tubules. Key findings included germ cell depletion, disorganized spermatogenic cells without spermatids in certain areas, apoptotic bodies, and intracytoplasmic vacuolization. The intertubular compartment showed no signs of inflammation, hyalinization, fibrosis, or necrosis. Despite widespread degeneration, some normal tubules were present in focal areas. The severity score of seminiferous tubule degeneration significantly increased from day 56 onwards (P < 0.05), suggesting a gradual and progressive compromise of the seminiferous epithelium. In contrast, testes from the blank-NLC group exhibited normal spermatogenesis. Overall, there were no significant changes in the volume of dissected testes, serum testosterone levels, or apoptotic index in AM-NLC-treated cats (P > 0.05). In conclusion, this study represents the first <em>in vivo</em> investigation of apoptotic-inducing agents as a novel nanomedicine-based antifertility compound for non-surgical castration in male animals. While the AM-NLC formulation proved safe for intratesticular administration, it failed to induce infertility in cats, as epididymal spermatozoa persisted throughout the study. Further research into alternative apoptosis-inducing nanomedicine sterilants remains both essential and challenging.</div></div>\",\"PeriodicalId\":23131,\"journal\":{\"name\":\"Theriogenology\",\"volume\":\"231 \",\"pages\":\"Pages 240-249\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theriogenology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093691X24004369\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X24004369","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Clinical trials of intratesticular administration of nanostructured lipid carriers encapsulated alpha-mangostin: Safety and efficacy on feline reproductive health
Surgical castration is a primary method for controlling male fertility, but it is impractical for large-scale population control of stray animals. Developing nanoparticle-mediated sterilants that induce cell apoptosis rather than necrosis is a complex and promising area of research. This study aimed to investigate the impact of intratesticular administration of alpha-mangostin encapsulated in nanostructured lipid carriers (AM-NLC) on testicular changes and any associated adverse effects over a 168-day observation period. Thirty-two healthy mature tomcats were enrolled. None of the cats treated with either AM-NLC (n = 28) or blank NLC (n = 4) exhibited noticeable complications related to pain or stress throughout the study, as assessed by clinical examination, blood profiles, and serum amyloid A levels. Histopathological analysis of AM-NLC treated cats revealed seminiferous epithelium degeneration, leading to defective tubules. Key findings included germ cell depletion, disorganized spermatogenic cells without spermatids in certain areas, apoptotic bodies, and intracytoplasmic vacuolization. The intertubular compartment showed no signs of inflammation, hyalinization, fibrosis, or necrosis. Despite widespread degeneration, some normal tubules were present in focal areas. The severity score of seminiferous tubule degeneration significantly increased from day 56 onwards (P < 0.05), suggesting a gradual and progressive compromise of the seminiferous epithelium. In contrast, testes from the blank-NLC group exhibited normal spermatogenesis. Overall, there were no significant changes in the volume of dissected testes, serum testosterone levels, or apoptotic index in AM-NLC-treated cats (P > 0.05). In conclusion, this study represents the first in vivo investigation of apoptotic-inducing agents as a novel nanomedicine-based antifertility compound for non-surgical castration in male animals. While the AM-NLC formulation proved safe for intratesticular administration, it failed to induce infertility in cats, as epididymal spermatozoa persisted throughout the study. Further research into alternative apoptosis-inducing nanomedicine sterilants remains both essential and challenging.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.