对古老的 Methanococcales 苹果酸脱氢酶进行表征后发现,其强大的热稳定性可防止其在强γ-辐照下解折。

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dominique Madern, Frédéric Halgand, Chantal Houée-Levin, Anne-Béatrice Dufour, Sandrine Coquille, Salomé Ansanay-Alex, Sophie Sacquin-Mora, Céline Brochier-Armanet
{"title":"对古老的 Methanococcales 苹果酸脱氢酶进行表征后发现,其强大的热稳定性可防止其在强γ-辐照下解折。","authors":"Dominique Madern, Frédéric Halgand, Chantal Houée-Levin, Anne-Béatrice Dufour, Sandrine Coquille, Salomé Ansanay-Alex, Sophie Sacquin-Mora, Céline Brochier-Armanet","doi":"10.1093/molbev/msae231","DOIUrl":null,"url":null,"abstract":"<p><p>Malate dehydrogenases (MalDHs) (EC.1.1.1.37), which are involved in the conversion of oxaloacetate to pyruvate in the tricarboxylic acid cycle, are a relevant model for the study of enzyme evolution and adaptation. Likewise, a recent study showed that Methanococcales, a major lineage of Archaea, is a good model to study the molecular processes of proteome thermoadaptation in prokaryotes. Here, we use ancestral sequence reconstruction and paleoenzymology to characterize both ancient and extant MalDHs. We observe a good correlation between inferred optimal growth temperatures and experimental optimal temperatures for activity (A-Topt). In particular, we show that the MalDH present in the ancestor of Methanococcales was hyperthermostable and had an A-Topt of 80 °C, consistent with a hyperthermophilic lifestyle. This ancestor gave rise to two lineages with different thermal constraints: one remained hyperthermophilic, while the other underwent several independent adaptations to colder environments. Surprisingly, the enzymes of the first lineage have retained a thermoresistant behavior (i.e. strong thermostability and high A-Topt), whereas the ancestor of the second lineage shows a strong thermostability, but a reduced A-Topt. Using mutants, we mimic the adaptation trajectory toward mesophily and show that it is possible to significantly reduce the A-Topt without altering the thermostability of the enzyme by introducing a few mutations. Finally, we reveal an unexpected link between thermostability and the ability to resist γ-irradiation-induced unfolding.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631191/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Characterization of Ancient Methanococcales Malate Dehydrogenases Reveals That Strong Thermal Stability Prevents Unfolding Under Intense γ-Irradiation.\",\"authors\":\"Dominique Madern, Frédéric Halgand, Chantal Houée-Levin, Anne-Béatrice Dufour, Sandrine Coquille, Salomé Ansanay-Alex, Sophie Sacquin-Mora, Céline Brochier-Armanet\",\"doi\":\"10.1093/molbev/msae231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malate dehydrogenases (MalDHs) (EC.1.1.1.37), which are involved in the conversion of oxaloacetate to pyruvate in the tricarboxylic acid cycle, are a relevant model for the study of enzyme evolution and adaptation. Likewise, a recent study showed that Methanococcales, a major lineage of Archaea, is a good model to study the molecular processes of proteome thermoadaptation in prokaryotes. Here, we use ancestral sequence reconstruction and paleoenzymology to characterize both ancient and extant MalDHs. We observe a good correlation between inferred optimal growth temperatures and experimental optimal temperatures for activity (A-Topt). In particular, we show that the MalDH present in the ancestor of Methanococcales was hyperthermostable and had an A-Topt of 80 °C, consistent with a hyperthermophilic lifestyle. This ancestor gave rise to two lineages with different thermal constraints: one remained hyperthermophilic, while the other underwent several independent adaptations to colder environments. Surprisingly, the enzymes of the first lineage have retained a thermoresistant behavior (i.e. strong thermostability and high A-Topt), whereas the ancestor of the second lineage shows a strong thermostability, but a reduced A-Topt. Using mutants, we mimic the adaptation trajectory toward mesophily and show that it is possible to significantly reduce the A-Topt without altering the thermostability of the enzyme by introducing a few mutations. Finally, we reveal an unexpected link between thermostability and the ability to resist γ-irradiation-induced unfolding.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631191/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msae231\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae231","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

苹果酸脱氢酶(MalDH)(EC.1.1.1.37)参与三羧酸循环中草酰乙酸到丙酮酸的转化,是研究酶进化和适应的相关模型。同样,最近的一项研究表明,古细菌的一个主要品系--甲烷球菌(Methanococcales)是研究原核生物蛋白质组热适应分子过程的良好模型。在这里,我们利用祖先序列重建和古酶学来描述古代和现生 MalDHs 的特征。我们观察到推断的最适生长温度(OGTs)与实验的最适活性温度(A-Topt)之间存在良好的相关性。特别是,我们发现存在于 Methanococcales 的祖先中的 MalDH 具有超恒温性,其 A-Topt 为 80°C,与嗜热生活方式一致。这个祖先产生了两个具有不同热限制的品系,其中一个品系仍然是嗜热的,而另一个品系则经历了数次对寒冷环境的独立适应。令人惊讶的是,第一系的酶保留了耐热性(即较强的耐热性和较高的A-Topt),而第二系的祖先则表现出较强的耐热性,但A-Topt却降低了。我们利用突变体模拟了嗜中性的适应轨迹,并证明通过引入少量突变,可以在不改变酶的恒温性的情况下显著降低 A-Topt。最后,我们揭示了耐热性与抗γ-辐照诱导的解折能力之间意想不到的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Characterization of Ancient Methanococcales Malate Dehydrogenases Reveals That Strong Thermal Stability Prevents Unfolding Under Intense γ-Irradiation.

Malate dehydrogenases (MalDHs) (EC.1.1.1.37), which are involved in the conversion of oxaloacetate to pyruvate in the tricarboxylic acid cycle, are a relevant model for the study of enzyme evolution and adaptation. Likewise, a recent study showed that Methanococcales, a major lineage of Archaea, is a good model to study the molecular processes of proteome thermoadaptation in prokaryotes. Here, we use ancestral sequence reconstruction and paleoenzymology to characterize both ancient and extant MalDHs. We observe a good correlation between inferred optimal growth temperatures and experimental optimal temperatures for activity (A-Topt). In particular, we show that the MalDH present in the ancestor of Methanococcales was hyperthermostable and had an A-Topt of 80 °C, consistent with a hyperthermophilic lifestyle. This ancestor gave rise to two lineages with different thermal constraints: one remained hyperthermophilic, while the other underwent several independent adaptations to colder environments. Surprisingly, the enzymes of the first lineage have retained a thermoresistant behavior (i.e. strong thermostability and high A-Topt), whereas the ancestor of the second lineage shows a strong thermostability, but a reduced A-Topt. Using mutants, we mimic the adaptation trajectory toward mesophily and show that it is possible to significantly reduce the A-Topt without altering the thermostability of the enzyme by introducing a few mutations. Finally, we reveal an unexpected link between thermostability and the ability to resist γ-irradiation-induced unfolding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信