Bettina Wollesen, Julia Gräf, Lasse Hansen, Anna Gurevich, Shirley A Elprama, Andreas Argubi-Wollesen, Kevin De Pauw
{"title":"在体力和认知要求较高的任务中使用上肢外骨骼的性别差异--随机实验的研究方案。","authors":"Bettina Wollesen, Julia Gräf, Lasse Hansen, Anna Gurevich, Shirley A Elprama, Andreas Argubi-Wollesen, Kevin De Pauw","doi":"10.3389/fneur.2024.1401937","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Upper limb exoskeletons are recommended to alleviate muscle fatigue, particularly in working conditions inducing musculoskeletal discomfort like overhead work. However, wearing an exoskeleton might introduce cognitive-motor interference, affecting performance. Understanding its neural impact and potential gender differences in design effects is crucial. Therefore, the aim of this study is to examine exoskeleton effects addressing cross-gender comparisons, and exploring the impact on cognitive and physical workload in real-world scenarios. The research questions address the impact of exoskeleton use on muscle synergies, upper body posture, cognitive resources, comfort/discomfort, acceptance and usability.</p><p><strong>Methods: </strong>The cross-sectional study integrates a multifactorial mixed-measure design. Participants are grouped by gender (female vs. male) and working condition (with vs. without exoskeleton). Motor performance and underlying neuronal correlates (fNIRS) will be analyzed. Based on an <i>a priori</i> sample size calculation, 80 participants (40 female/40 male) will be recruited. Working performance will be assessed by 1. Physical Performance Task (PILE task) and 2. Precision Task (following the Fitts paradigm), while body postures will be monitored with an Xsens motion capture system. Brain activation will be captured with an fNIRS system comprising 32 active optodes. Postural comfort/discomfort, acceptance, and usability will be reported via standardized questionnaires.</p><p><strong>Discussion: </strong>The study will gain insights into potential gender differences in exoskeleton use and will contribute to designing and optimizing the implementation of exoskeletons by considering muscle synergies, movement variability and cognitive resource allocation. Additionally, the study also highlights user discomfort, a crucial factor that could impede widespread adoption, particularly among females, in real-world scenarios.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"15 ","pages":"1401937"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527621/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gender differences in the use of an upper-extremity exoskeleton during physically and cognitively demanding tasks- a study protocol for a randomized experimental trial.\",\"authors\":\"Bettina Wollesen, Julia Gräf, Lasse Hansen, Anna Gurevich, Shirley A Elprama, Andreas Argubi-Wollesen, Kevin De Pauw\",\"doi\":\"10.3389/fneur.2024.1401937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Upper limb exoskeletons are recommended to alleviate muscle fatigue, particularly in working conditions inducing musculoskeletal discomfort like overhead work. However, wearing an exoskeleton might introduce cognitive-motor interference, affecting performance. Understanding its neural impact and potential gender differences in design effects is crucial. Therefore, the aim of this study is to examine exoskeleton effects addressing cross-gender comparisons, and exploring the impact on cognitive and physical workload in real-world scenarios. The research questions address the impact of exoskeleton use on muscle synergies, upper body posture, cognitive resources, comfort/discomfort, acceptance and usability.</p><p><strong>Methods: </strong>The cross-sectional study integrates a multifactorial mixed-measure design. Participants are grouped by gender (female vs. male) and working condition (with vs. without exoskeleton). Motor performance and underlying neuronal correlates (fNIRS) will be analyzed. Based on an <i>a priori</i> sample size calculation, 80 participants (40 female/40 male) will be recruited. Working performance will be assessed by 1. Physical Performance Task (PILE task) and 2. Precision Task (following the Fitts paradigm), while body postures will be monitored with an Xsens motion capture system. Brain activation will be captured with an fNIRS system comprising 32 active optodes. Postural comfort/discomfort, acceptance, and usability will be reported via standardized questionnaires.</p><p><strong>Discussion: </strong>The study will gain insights into potential gender differences in exoskeleton use and will contribute to designing and optimizing the implementation of exoskeletons by considering muscle synergies, movement variability and cognitive resource allocation. Additionally, the study also highlights user discomfort, a crucial factor that could impede widespread adoption, particularly among females, in real-world scenarios.</p>\",\"PeriodicalId\":12575,\"journal\":{\"name\":\"Frontiers in Neurology\",\"volume\":\"15 \",\"pages\":\"1401937\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527621/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fneur.2024.1401937\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2024.1401937","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Gender differences in the use of an upper-extremity exoskeleton during physically and cognitively demanding tasks- a study protocol for a randomized experimental trial.
Background: Upper limb exoskeletons are recommended to alleviate muscle fatigue, particularly in working conditions inducing musculoskeletal discomfort like overhead work. However, wearing an exoskeleton might introduce cognitive-motor interference, affecting performance. Understanding its neural impact and potential gender differences in design effects is crucial. Therefore, the aim of this study is to examine exoskeleton effects addressing cross-gender comparisons, and exploring the impact on cognitive and physical workload in real-world scenarios. The research questions address the impact of exoskeleton use on muscle synergies, upper body posture, cognitive resources, comfort/discomfort, acceptance and usability.
Methods: The cross-sectional study integrates a multifactorial mixed-measure design. Participants are grouped by gender (female vs. male) and working condition (with vs. without exoskeleton). Motor performance and underlying neuronal correlates (fNIRS) will be analyzed. Based on an a priori sample size calculation, 80 participants (40 female/40 male) will be recruited. Working performance will be assessed by 1. Physical Performance Task (PILE task) and 2. Precision Task (following the Fitts paradigm), while body postures will be monitored with an Xsens motion capture system. Brain activation will be captured with an fNIRS system comprising 32 active optodes. Postural comfort/discomfort, acceptance, and usability will be reported via standardized questionnaires.
Discussion: The study will gain insights into potential gender differences in exoskeleton use and will contribute to designing and optimizing the implementation of exoskeletons by considering muscle synergies, movement variability and cognitive resource allocation. Additionally, the study also highlights user discomfort, a crucial factor that could impede widespread adoption, particularly among females, in real-world scenarios.
期刊介绍:
The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.