西帕糖苷酶α加米格鲁司他:将晚发庞贝病的作用机制与临床疗效联系起来。

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY
Frontiers in Neurology Pub Date : 2024-10-18 eCollection Date: 2024-01-01 DOI:10.3389/fneur.2024.1451512
Barry J Byrne, Giancarlo Parenti, Benedikt Schoser, Ans T van der Ploeg, Hung Do, Brian Fox, Mitchell Goldman, Franklin K Johnson, Jia Kang, Nickita Mehta, John Mondick, M Osman Sheikh, Sheela Sitaraman Das, Steven Tuske, Jon Brudvig, Jill M Weimer, Tahseen Mozaffar
{"title":"西帕糖苷酶α加米格鲁司他:将晚发庞贝病的作用机制与临床疗效联系起来。","authors":"Barry J Byrne, Giancarlo Parenti, Benedikt Schoser, Ans T van der Ploeg, Hung Do, Brian Fox, Mitchell Goldman, Franklin K Johnson, Jia Kang, Nickita Mehta, John Mondick, M Osman Sheikh, Sheela Sitaraman Das, Steven Tuske, Jon Brudvig, Jill M Weimer, Tahseen Mozaffar","doi":"10.3389/fneur.2024.1451512","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme replacement therapy (ERT) is the only approved disease-modifying treatment modality for Pompe disease, a rare, inherited metabolic disorder caused by a deficiency in the acid <i>α</i>-glucosidase (GAA) enzyme that catabolizes lysosomal glycogen. First-generation recombinant human GAA (rhGAA) ERT (alglucosidase alfa) can slow the progressive muscle degeneration characteristic of the disease. Still, most patients experience diminished efficacy over time, possibly because of poor uptake into target tissues. Next-generation ERTs aim to address this problem by increasing bis-phosphorylated high mannose (bis-M6P) <i>N</i>-glycans on rhGAA as these moieties have sufficiently high receptor binding affinity at the resultant low interstitial enzyme concentrations after dosing to drive uptake by the cation-independent mannose 6-phosphate receptor on target cells. However, some approaches introduce bis-M6P onto rhGAA via non-natural linkages that cannot be hydrolyzed by natural human enzymes and thus inhibit the endolysosomal glycan trimming necessary for complete enzyme activation after cell uptake. Furthermore, all rhGAA ERTs face potential inactivation during intravenous delivery (and subsequent non-productive clearance) as GAA is an acid hydrolase that is rapidly denatured in the near-neutral pH of the blood. One new therapy, cipaglucosidase alfa plus miglustat, is hypothesized to address these challenges by combining an enzyme enriched with naturally occurring bis-M6P <i>N</i>-glycans with a small-molecule stabilizer. Here, we investigate this hypothesis by analyzing published and new data related to the mechanism of action of the enzyme and stabilizer molecule. Based on an extensive collection of <i>in vitro</i>, preclinical, and clinical data, we conclude that cipaglucosidase alfa plus miglustat successfully addresses each of these challenges to offer meaningful advantages in terms of pharmacokinetic exposure, target-cell uptake, endolysosomal processing, and clinical benefit.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"15 ","pages":"1451512"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cipaglucosidase alfa plus miglustat: linking mechanism of action to clinical outcomes in late-onset Pompe disease.\",\"authors\":\"Barry J Byrne, Giancarlo Parenti, Benedikt Schoser, Ans T van der Ploeg, Hung Do, Brian Fox, Mitchell Goldman, Franklin K Johnson, Jia Kang, Nickita Mehta, John Mondick, M Osman Sheikh, Sheela Sitaraman Das, Steven Tuske, Jon Brudvig, Jill M Weimer, Tahseen Mozaffar\",\"doi\":\"10.3389/fneur.2024.1451512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzyme replacement therapy (ERT) is the only approved disease-modifying treatment modality for Pompe disease, a rare, inherited metabolic disorder caused by a deficiency in the acid <i>α</i>-glucosidase (GAA) enzyme that catabolizes lysosomal glycogen. First-generation recombinant human GAA (rhGAA) ERT (alglucosidase alfa) can slow the progressive muscle degeneration characteristic of the disease. Still, most patients experience diminished efficacy over time, possibly because of poor uptake into target tissues. Next-generation ERTs aim to address this problem by increasing bis-phosphorylated high mannose (bis-M6P) <i>N</i>-glycans on rhGAA as these moieties have sufficiently high receptor binding affinity at the resultant low interstitial enzyme concentrations after dosing to drive uptake by the cation-independent mannose 6-phosphate receptor on target cells. However, some approaches introduce bis-M6P onto rhGAA via non-natural linkages that cannot be hydrolyzed by natural human enzymes and thus inhibit the endolysosomal glycan trimming necessary for complete enzyme activation after cell uptake. Furthermore, all rhGAA ERTs face potential inactivation during intravenous delivery (and subsequent non-productive clearance) as GAA is an acid hydrolase that is rapidly denatured in the near-neutral pH of the blood. One new therapy, cipaglucosidase alfa plus miglustat, is hypothesized to address these challenges by combining an enzyme enriched with naturally occurring bis-M6P <i>N</i>-glycans with a small-molecule stabilizer. Here, we investigate this hypothesis by analyzing published and new data related to the mechanism of action of the enzyme and stabilizer molecule. Based on an extensive collection of <i>in vitro</i>, preclinical, and clinical data, we conclude that cipaglucosidase alfa plus miglustat successfully addresses each of these challenges to offer meaningful advantages in terms of pharmacokinetic exposure, target-cell uptake, endolysosomal processing, and clinical benefit.</p>\",\"PeriodicalId\":12575,\"journal\":{\"name\":\"Frontiers in Neurology\",\"volume\":\"15 \",\"pages\":\"1451512\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fneur.2024.1451512\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2024.1451512","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

酶替代疗法(ERT)是唯一获准用于治疗庞贝氏症的疾病改变疗法。庞贝氏症是一种罕见的遗传性代谢性疾病,因缺乏能分解溶酶体糖原的酸α-葡萄糖苷酶(GAA)而引起。第一代重组人 GAA(rhGAA)ERT(alglucosidase alfa)可减缓该病特有的进行性肌肉变性。然而,随着时间的推移,大多数患者的疗效会逐渐减弱,这可能是由于靶组织吸收不良所致。新一代 ERT 旨在通过增加 rhGAA 上的双磷酸化高甘露糖(bis-M6P)N-糖来解决这一问题,因为这些分子在用药后产生的低间质酶浓度下具有足够高的受体结合亲和力,从而驱动靶细胞上不依赖阳离子的 6-磷酸甘露糖受体吸收。然而,有些方法通过非天然连接将双-M6P 引入 rhGAA,而天然人类酶无法水解这种连接,因此抑制了细胞摄取后完全激活酶所需的溶酶体内糖修饰。此外,由于 GAA 是一种酸性水解酶,在血液中接近中性的 pH 值下会迅速变性,因此所有 rhGAA ERT 在静脉注射过程中都可能失活(以及随后的非生产性清除)。一种新疗法是西帕糖苷酶α加米格鲁司他,据推测,这种疗法通过将富含天然双-M6P N-糖的酶与小分子稳定剂相结合来应对这些挑战。在此,我们通过分析与酶和稳定剂分子的作用机制有关的已发表数据和新数据,对这一假设进行了研究。根据大量的体外、临床前和临床数据,我们得出结论:西帕糖苷酶α加米格司他成功地应对了上述挑战,在药代动力学暴露、靶细胞摄取、溶酶体内处理和临床疗效方面都具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cipaglucosidase alfa plus miglustat: linking mechanism of action to clinical outcomes in late-onset Pompe disease.

Enzyme replacement therapy (ERT) is the only approved disease-modifying treatment modality for Pompe disease, a rare, inherited metabolic disorder caused by a deficiency in the acid α-glucosidase (GAA) enzyme that catabolizes lysosomal glycogen. First-generation recombinant human GAA (rhGAA) ERT (alglucosidase alfa) can slow the progressive muscle degeneration characteristic of the disease. Still, most patients experience diminished efficacy over time, possibly because of poor uptake into target tissues. Next-generation ERTs aim to address this problem by increasing bis-phosphorylated high mannose (bis-M6P) N-glycans on rhGAA as these moieties have sufficiently high receptor binding affinity at the resultant low interstitial enzyme concentrations after dosing to drive uptake by the cation-independent mannose 6-phosphate receptor on target cells. However, some approaches introduce bis-M6P onto rhGAA via non-natural linkages that cannot be hydrolyzed by natural human enzymes and thus inhibit the endolysosomal glycan trimming necessary for complete enzyme activation after cell uptake. Furthermore, all rhGAA ERTs face potential inactivation during intravenous delivery (and subsequent non-productive clearance) as GAA is an acid hydrolase that is rapidly denatured in the near-neutral pH of the blood. One new therapy, cipaglucosidase alfa plus miglustat, is hypothesized to address these challenges by combining an enzyme enriched with naturally occurring bis-M6P N-glycans with a small-molecule stabilizer. Here, we investigate this hypothesis by analyzing published and new data related to the mechanism of action of the enzyme and stabilizer molecule. Based on an extensive collection of in vitro, preclinical, and clinical data, we conclude that cipaglucosidase alfa plus miglustat successfully addresses each of these challenges to offer meaningful advantages in terms of pharmacokinetic exposure, target-cell uptake, endolysosomal processing, and clinical benefit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信