Xue Kong , Wei Wang , Sunan Xia , Ying Zhi , Yuefeng Cai , Haibin Zhang , Xin Shen
{"title":"蛤蚧短肽聚糖识别蛋白的分子和功能特征。","authors":"Xue Kong , Wei Wang , Sunan Xia , Ying Zhi , Yuefeng Cai , Haibin Zhang , Xin Shen","doi":"10.1016/j.dci.2024.105284","DOIUrl":null,"url":null,"abstract":"<div><div>Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn<sup>2+</sup> binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn<sup>2+</sup>-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited <em>Escherichia coli</em> and <em>Bacillus subtilis</em>, while rAmPGRP-S2 and -S3 inhibited <em>Bacillus subtilis</em> in the absence of Zn<sup>2<em>+</em></sup>. In the presence of Zn<sup>2+</sup>, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against <em>Staphylococcus aureus</em> or <em>Bacillus subtilis</em>. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105284"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam\",\"authors\":\"Xue Kong , Wei Wang , Sunan Xia , Ying Zhi , Yuefeng Cai , Haibin Zhang , Xin Shen\",\"doi\":\"10.1016/j.dci.2024.105284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn<sup>2+</sup> binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn<sup>2+</sup>-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited <em>Escherichia coli</em> and <em>Bacillus subtilis</em>, while rAmPGRP-S2 and -S3 inhibited <em>Bacillus subtilis</em> in the absence of Zn<sup>2<em>+</em></sup>. In the presence of Zn<sup>2+</sup>, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against <em>Staphylococcus aureus</em> or <em>Bacillus subtilis</em>. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.</div></div>\",\"PeriodicalId\":11228,\"journal\":{\"name\":\"Developmental and comparative immunology\",\"volume\":\"162 \",\"pages\":\"Article 105284\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental and comparative immunology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0145305X24001563\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental and comparative immunology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X24001563","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam
Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn2+ binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn2+-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited Escherichia coli and Bacillus subtilis, while rAmPGRP-S2 and -S3 inhibited Bacillus subtilis in the absence of Zn2+. In the presence of Zn2+, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against Staphylococcus aureus or Bacillus subtilis. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.
期刊介绍:
Developmental and Comparative Immunology (DCI) is an international journal that publishes articles describing original research in all areas of immunology, including comparative aspects of immunity and the evolution and development of the immune system. Manuscripts describing studies of immune systems in both vertebrates and invertebrates are welcome. All levels of immunological investigations are appropriate: organismal, cellular, biochemical and molecular genetics, extending to such fields as aging of the immune system, interaction between the immune and neuroendocrine system and intestinal immunity.