{"title":"芒果苷的化学合成和酶促修饰:药物发现中的结构改造综述》。","authors":"Jordan Joon-Yip Lew, Yeun-Mun Choo","doi":"10.2174/0109298673312728241014025846","DOIUrl":null,"url":null,"abstract":"<p><p>Mangosteens, a prominent component of Garcinia mangostana, have been ex-tensively studied for their biological activities and structural modifications. Chemical methods, including cyclization reactions under acidic conditions, have yielded many de-rivatives, which often exhibit enhanced pharmacological properties compared to itself. Enzymatic biotransformation, such as glycosylation and oxidation mediated by fungal species and enzymes like horseradish peroxidase, have provided regioselective pathways to functionalized mangostin derivatives. These studies highlight the versatility of mangos-tin as a scaffold for designing compounds with tailored biological functions. Overall, mangosteen represents a promising platform for developing compounds with enhanced pharmacological activities, paving the way for innovative approaches in biomedicine and pharmaceutical sciences. This review provides a comprehensive examination of the chem-istry of mangosteens, detailing their total synthesis and the derivatives obtained through both chemical and enzymatic methodologies.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Synthesis and Enzymatic Modification of Mangostins: A Comprehensive Review on Structural Modifications for Drug Discover.\",\"authors\":\"Jordan Joon-Yip Lew, Yeun-Mun Choo\",\"doi\":\"10.2174/0109298673312728241014025846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mangosteens, a prominent component of Garcinia mangostana, have been ex-tensively studied for their biological activities and structural modifications. Chemical methods, including cyclization reactions under acidic conditions, have yielded many de-rivatives, which often exhibit enhanced pharmacological properties compared to itself. Enzymatic biotransformation, such as glycosylation and oxidation mediated by fungal species and enzymes like horseradish peroxidase, have provided regioselective pathways to functionalized mangostin derivatives. These studies highlight the versatility of mangos-tin as a scaffold for designing compounds with tailored biological functions. Overall, mangosteen represents a promising platform for developing compounds with enhanced pharmacological activities, paving the way for innovative approaches in biomedicine and pharmaceutical sciences. This review provides a comprehensive examination of the chem-istry of mangosteens, detailing their total synthesis and the derivatives obtained through both chemical and enzymatic methodologies.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673312728241014025846\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673312728241014025846","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chemical Synthesis and Enzymatic Modification of Mangostins: A Comprehensive Review on Structural Modifications for Drug Discover.
Mangosteens, a prominent component of Garcinia mangostana, have been ex-tensively studied for their biological activities and structural modifications. Chemical methods, including cyclization reactions under acidic conditions, have yielded many de-rivatives, which often exhibit enhanced pharmacological properties compared to itself. Enzymatic biotransformation, such as glycosylation and oxidation mediated by fungal species and enzymes like horseradish peroxidase, have provided regioselective pathways to functionalized mangostin derivatives. These studies highlight the versatility of mangos-tin as a scaffold for designing compounds with tailored biological functions. Overall, mangosteen represents a promising platform for developing compounds with enhanced pharmacological activities, paving the way for innovative approaches in biomedicine and pharmaceutical sciences. This review provides a comprehensive examination of the chem-istry of mangosteens, detailing their total synthesis and the derivatives obtained through both chemical and enzymatic methodologies.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.