Ngoc Hung Truong, Phi Hung Nguyen, Huu Nghi Do, Xuan Ha Nguyen, Thanh Loc Vu, The Hai Pham, Hanh Trang Luu, Manh Cuong Nguyen, Van Chinh Luu
{"title":"双氢青蒿素和泽润邦的新型醚类共轭物的合成与细胞毒活性:网络药理学与体外试验相结合的证据","authors":"Ngoc Hung Truong, Phi Hung Nguyen, Huu Nghi Do, Xuan Ha Nguyen, Thanh Loc Vu, The Hai Pham, Hanh Trang Luu, Manh Cuong Nguyen, Van Chinh Luu","doi":"10.1002/cbdv.202401571","DOIUrl":null,"url":null,"abstract":"<p><p>O-alkylation of the hydroxy compounds, including acetaminophen, starting compounds for the synthesis of the drug, and natural compounds with the bromides of dihydroartemisinin (DHA) and zerumbone, produced twenty novel ether conjugates 15a-j and 16a-j, respectively. Their structures were elucidated by 1D-, 2D-NMR, and HRMS data. Their in vitro cytotoxic activity was screened using three cancer cell lines: HepG2, HeLa, and PC-12. The results showed that eight out of ten conjugates in series 15a-j containing DHA skeleton exhibited activity against the tested cell lines, with IC50 values ranging from 4.26-47.37 µM. Notably, all conjugates in series 16a-j containing zerumbone scaffolds inhibited the growth of HepG2, HeLa, and PC12 with IC50 in the range of 4.46-35.07 µM. Using network pharmacology and molecular docking to target anti-liver cancer in the above 20 synthetic compounds, 271 intersection targets were discovered, including 5 targets with high degree values (EGFR, ESR1, AKT1, MDM2, and NFKB1). Artemisinin derivative 15i gave the highest binding energy for targets AKT1, EGFR, and NFKB1, while zerumbone-murrayafoline A ether 16g in the remaining series also gave the highest energy for proteins EGFR, AKT1, and NFKB1.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Cytotoxic Activities of Novel Ether Conjugates of Dihydroartemisinin and Zerumbone: Evidenced by Intergrating Network Pharmacology and In Vitro Assay.\",\"authors\":\"Ngoc Hung Truong, Phi Hung Nguyen, Huu Nghi Do, Xuan Ha Nguyen, Thanh Loc Vu, The Hai Pham, Hanh Trang Luu, Manh Cuong Nguyen, Van Chinh Luu\",\"doi\":\"10.1002/cbdv.202401571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>O-alkylation of the hydroxy compounds, including acetaminophen, starting compounds for the synthesis of the drug, and natural compounds with the bromides of dihydroartemisinin (DHA) and zerumbone, produced twenty novel ether conjugates 15a-j and 16a-j, respectively. Their structures were elucidated by 1D-, 2D-NMR, and HRMS data. Their in vitro cytotoxic activity was screened using three cancer cell lines: HepG2, HeLa, and PC-12. The results showed that eight out of ten conjugates in series 15a-j containing DHA skeleton exhibited activity against the tested cell lines, with IC50 values ranging from 4.26-47.37 µM. Notably, all conjugates in series 16a-j containing zerumbone scaffolds inhibited the growth of HepG2, HeLa, and PC12 with IC50 in the range of 4.46-35.07 µM. Using network pharmacology and molecular docking to target anti-liver cancer in the above 20 synthetic compounds, 271 intersection targets were discovered, including 5 targets with high degree values (EGFR, ESR1, AKT1, MDM2, and NFKB1). Artemisinin derivative 15i gave the highest binding energy for targets AKT1, EGFR, and NFKB1, while zerumbone-murrayafoline A ether 16g in the remaining series also gave the highest energy for proteins EGFR, AKT1, and NFKB1.</p>\",\"PeriodicalId\":9878,\"journal\":{\"name\":\"Chemistry & Biodiversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & Biodiversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cbdv.202401571\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202401571","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis and Cytotoxic Activities of Novel Ether Conjugates of Dihydroartemisinin and Zerumbone: Evidenced by Intergrating Network Pharmacology and In Vitro Assay.
O-alkylation of the hydroxy compounds, including acetaminophen, starting compounds for the synthesis of the drug, and natural compounds with the bromides of dihydroartemisinin (DHA) and zerumbone, produced twenty novel ether conjugates 15a-j and 16a-j, respectively. Their structures were elucidated by 1D-, 2D-NMR, and HRMS data. Their in vitro cytotoxic activity was screened using three cancer cell lines: HepG2, HeLa, and PC-12. The results showed that eight out of ten conjugates in series 15a-j containing DHA skeleton exhibited activity against the tested cell lines, with IC50 values ranging from 4.26-47.37 µM. Notably, all conjugates in series 16a-j containing zerumbone scaffolds inhibited the growth of HepG2, HeLa, and PC12 with IC50 in the range of 4.46-35.07 µM. Using network pharmacology and molecular docking to target anti-liver cancer in the above 20 synthetic compounds, 271 intersection targets were discovered, including 5 targets with high degree values (EGFR, ESR1, AKT1, MDM2, and NFKB1). Artemisinin derivative 15i gave the highest binding energy for targets AKT1, EGFR, and NFKB1, while zerumbone-murrayafoline A ether 16g in the remaining series also gave the highest energy for proteins EGFR, AKT1, and NFKB1.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.