Zhenyang Su, Tianhua Xu, Jin-Yu Sun, Wei Sun, Xiangqing Kong
{"title":"大鼠不同部位脂肪间充质干细胞转录组和 microRNA 在衰老过程中的变化。","authors":"Zhenyang Su, Tianhua Xu, Jin-Yu Sun, Wei Sun, Xiangqing Kong","doi":"10.1152/ajpcell.00044.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is an intricate and gradual process characterized by tissue and cellular dysfunction. Adipose-derived mesenchymal stem cells (ADMSCs) experience a functional decline as part of systemic aging. However, the alterations in ADMSCs across various anatomical sites throughout an individual's lifespan remain unclear. To shed light on these changes, we collected white adipose tissue and brown adipose tissue samples from the epididymis, perirenal, inguinal, and scapular regions of young, adult, and aged rats and subsequently isolated ADMSCs for RNA sequencing. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Marker genes of ADMSCs from different sites were identified. Aging triggered notable activation of inflammatory and immune responses while diminishing the ADMSC differentiation capacity and ability to maintain a normal tissue morphology. Furthermore, miR-195-5p and miR-497-3p, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation, were positively correlated with aging. These findings increase our understanding of ADMSC senescence and underscore the unique physiological changes and functions of ADMSCs across different anatomical sites during aging.<b>NEW & NOTEWORTHY</b> Dynamic changes in mRNAs and miRNAs of ADMSCs during aging are shown. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Aging leads to the activation of inflammatory and cellular dysfunction. miR-195-5p and miR-497-3p are positively correlated with aging, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation. ADMSCs associated with different anatomical sites have site-specific markers.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C78-C94"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alterations in the transcriptome and microRNAs of adipose-derived mesenchymal stem cells from different sites in rats during aging.\",\"authors\":\"Zhenyang Su, Tianhua Xu, Jin-Yu Sun, Wei Sun, Xiangqing Kong\",\"doi\":\"10.1152/ajpcell.00044.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging is an intricate and gradual process characterized by tissue and cellular dysfunction. Adipose-derived mesenchymal stem cells (ADMSCs) experience a functional decline as part of systemic aging. However, the alterations in ADMSCs across various anatomical sites throughout an individual's lifespan remain unclear. To shed light on these changes, we collected white adipose tissue and brown adipose tissue samples from the epididymis, perirenal, inguinal, and scapular regions of young, adult, and aged rats and subsequently isolated ADMSCs for RNA sequencing. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Marker genes of ADMSCs from different sites were identified. Aging triggered notable activation of inflammatory and immune responses while diminishing the ADMSC differentiation capacity and ability to maintain a normal tissue morphology. Furthermore, miR-195-5p and miR-497-3p, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation, were positively correlated with aging. These findings increase our understanding of ADMSC senescence and underscore the unique physiological changes and functions of ADMSCs across different anatomical sites during aging.<b>NEW & NOTEWORTHY</b> Dynamic changes in mRNAs and miRNAs of ADMSCs during aging are shown. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Aging leads to the activation of inflammatory and cellular dysfunction. miR-195-5p and miR-497-3p are positively correlated with aging, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation. ADMSCs associated with different anatomical sites have site-specific markers.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C78-C94\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00044.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00044.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Alterations in the transcriptome and microRNAs of adipose-derived mesenchymal stem cells from different sites in rats during aging.
Aging is an intricate and gradual process characterized by tissue and cellular dysfunction. Adipose-derived mesenchymal stem cells (ADMSCs) experience a functional decline as part of systemic aging. However, the alterations in ADMSCs across various anatomical sites throughout an individual's lifespan remain unclear. To shed light on these changes, we collected white adipose tissue and brown adipose tissue samples from the epididymis, perirenal, inguinal, and scapular regions of young, adult, and aged rats and subsequently isolated ADMSCs for RNA sequencing. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Marker genes of ADMSCs from different sites were identified. Aging triggered notable activation of inflammatory and immune responses while diminishing the ADMSC differentiation capacity and ability to maintain a normal tissue morphology. Furthermore, miR-195-5p and miR-497-3p, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation, were positively correlated with aging. These findings increase our understanding of ADMSC senescence and underscore the unique physiological changes and functions of ADMSCs across different anatomical sites during aging.NEW & NOTEWORTHY Dynamic changes in mRNAs and miRNAs of ADMSCs during aging are shown. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Aging leads to the activation of inflammatory and cellular dysfunction. miR-195-5p and miR-497-3p are positively correlated with aging, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation. ADMSCs associated with different anatomical sites have site-specific markers.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.