Rapid estimation of carbon footprints in agrochemical development: correlation of process mass intensity with CO2 emissions.
Background: The agricultural sector faces a challenge in balancing increasing food demand while minimizing environmental impacts. Crop protection products are crucial for achieving high crop yields and ensuring food security. However, life cycle assessment (LCA), the standard framework for evaluating environmental impact, is time-consuming and costly, especially during early product development. To address this, a novel tool correlating process mass intensity (PMI) with greenhouse gas (GHG) emissions has been developed as a streamlined alternative.
Results: A strong linear correlation (R2 = 0.95) was identified between PMI and product GHG emissions, enabling rapid carbon footprint estimation using simplified PMI data. The model was validated using 13 small molecule active ingredients (AIs), showing a mean absolute error (MAE) of 55 g CO₂/kg AI and a root mean square error (RMSE) of 64 kg CO₂/kg AI. Residual analysis demonstrated random distribution, suggesting reliable predictions.
期刊介绍:
Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management.
Published for SCI by John Wiley & Sons Ltd.