{"title":"人参皂苷Rg1通过lncRNA-Malat1/miR-124-3p/Lamc1轴驱动PI3K/AKT信号通路调控星形胶质细胞的激活,促进脊髓损伤的修复","authors":"Yin Zhu, Wenjun Zou, Baihan Sun, Kelv Shen, Feiyun Xia, Hao Wang, Fengxian Jiang, Zhengfeng Lu","doi":"10.1111/cns.70103","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>To investigate the regulation of ginsenoside Rg1 on the PI3K/AKT pathway through the lncRNA-Malat1/miR-124-3p/ Laminin gamma1 (Lamc1) axis, activating astrocytes (As) to promote the repair of spinal cord injury (SCI).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Bioinformatics analysis was used to predict miRNA targeting Lamc1 and lncRNA targeting miR-124-3p, which were then validated through a dual-luciferase assay. Following transfection, the relationships between Malat1, miR-124-3p, and Lamc1 expression levels were assessed by qRT-PCR and Western blot (WB). Immunofluorescence staining and immunohistochemistry were utilized to measure Lamc1 expression, while changes in cavity area were observed through hematoxylin–eosin (HE) staining. Basso-Beattie-Bresnahan (BBB) scale and footprint analysis were used to evaluate functional recovery. WB was performed to assess the expression of PI3K/AKT pathway-related protein.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Rg1 was found to upregulate Malat1 expression, which in turn modulated the Malat1/miR-124-3p/Lamc1 axis. Furthermore, Rg1 activated the PI3K/Akt signaling pathway, significantly reducing the SCI cavity area and improving hind limb motor function. However, knockout of Malat1 hindered these effects, and inhibition of miR-124-3p reversed the silencing effects of Malat1.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Rg1 can induce Malat1 expression to activate the Lamc1/PI3K/AKT signaling pathway by sponging with miR-124-3p, thereby regulating As activity to repair SCI.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"30 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70103","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside Rg1 Regulates the Activation of Astrocytes Through lncRNA-Malat1/miR-124-3p/Lamc1 Axis Driving PI3K/AKT Signaling Pathway, Promoting the Repair of Spinal Cord Injury\",\"authors\":\"Yin Zhu, Wenjun Zou, Baihan Sun, Kelv Shen, Feiyun Xia, Hao Wang, Fengxian Jiang, Zhengfeng Lu\",\"doi\":\"10.1111/cns.70103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>To investigate the regulation of ginsenoside Rg1 on the PI3K/AKT pathway through the lncRNA-Malat1/miR-124-3p/ Laminin gamma1 (Lamc1) axis, activating astrocytes (As) to promote the repair of spinal cord injury (SCI).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Bioinformatics analysis was used to predict miRNA targeting Lamc1 and lncRNA targeting miR-124-3p, which were then validated through a dual-luciferase assay. Following transfection, the relationships between Malat1, miR-124-3p, and Lamc1 expression levels were assessed by qRT-PCR and Western blot (WB). Immunofluorescence staining and immunohistochemistry were utilized to measure Lamc1 expression, while changes in cavity area were observed through hematoxylin–eosin (HE) staining. Basso-Beattie-Bresnahan (BBB) scale and footprint analysis were used to evaluate functional recovery. WB was performed to assess the expression of PI3K/AKT pathway-related protein.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Rg1 was found to upregulate Malat1 expression, which in turn modulated the Malat1/miR-124-3p/Lamc1 axis. Furthermore, Rg1 activated the PI3K/Akt signaling pathway, significantly reducing the SCI cavity area and improving hind limb motor function. However, knockout of Malat1 hindered these effects, and inhibition of miR-124-3p reversed the silencing effects of Malat1.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Rg1 can induce Malat1 expression to activate the Lamc1/PI3K/AKT signaling pathway by sponging with miR-124-3p, thereby regulating As activity to repair SCI.</p>\\n </section>\\n </div>\",\"PeriodicalId\":154,\"journal\":{\"name\":\"CNS Neuroscience & Therapeutics\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS Neuroscience & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cns.70103\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70103","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Ginsenoside Rg1 Regulates the Activation of Astrocytes Through lncRNA-Malat1/miR-124-3p/Lamc1 Axis Driving PI3K/AKT Signaling Pathway, Promoting the Repair of Spinal Cord Injury
Aim
To investigate the regulation of ginsenoside Rg1 on the PI3K/AKT pathway through the lncRNA-Malat1/miR-124-3p/ Laminin gamma1 (Lamc1) axis, activating astrocytes (As) to promote the repair of spinal cord injury (SCI).
Methods
Bioinformatics analysis was used to predict miRNA targeting Lamc1 and lncRNA targeting miR-124-3p, which were then validated through a dual-luciferase assay. Following transfection, the relationships between Malat1, miR-124-3p, and Lamc1 expression levels were assessed by qRT-PCR and Western blot (WB). Immunofluorescence staining and immunohistochemistry were utilized to measure Lamc1 expression, while changes in cavity area were observed through hematoxylin–eosin (HE) staining. Basso-Beattie-Bresnahan (BBB) scale and footprint analysis were used to evaluate functional recovery. WB was performed to assess the expression of PI3K/AKT pathway-related protein.
Results
Rg1 was found to upregulate Malat1 expression, which in turn modulated the Malat1/miR-124-3p/Lamc1 axis. Furthermore, Rg1 activated the PI3K/Akt signaling pathway, significantly reducing the SCI cavity area and improving hind limb motor function. However, knockout of Malat1 hindered these effects, and inhibition of miR-124-3p reversed the silencing effects of Malat1.
Conclusions
Rg1 can induce Malat1 expression to activate the Lamc1/PI3K/AKT signaling pathway by sponging with miR-124-3p, thereby regulating As activity to repair SCI.
期刊介绍:
CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.