Xianrui Jiang, Tao Yao, Xingxin Shi, Hongliang Han, Zhanfang Ma
{"title":"在常温下快速定制 ZIF-8 表面微环境,提高用于生物传感的 AuNPs 的葡萄糖氧化酶样活性。","authors":"Xianrui Jiang, Tao Yao, Xingxin Shi, Hongliang Han, Zhanfang Ma","doi":"10.1016/j.colsurfb.2024.114331","DOIUrl":null,"url":null,"abstract":"<p><p>Rational design and tailoring of the surface microenvironment surrounding the catalytic sites, such as noble metal nanoparticles, is an effective way to enhance the catalytic activity of mimicking enzymes. However, it remains on-going challenges to regulate the microenvironment of the catalytic sites due to the lack of tunable variability in structural precision of conventional solid catalysts. Herein, three types of zeolitic imidazolate framework-8 (ZIF-8) with different major crystal facet orientations, i.e., cubic with (100) facets (denoted ZIF-8<sub>c</sub>), truncated dodecahedral with (100), (110) facets (denoted ZIF-8<sub>tr</sub>), and dodecahedral with (110) facets (denoted ZIF-8<sub>r</sub>), were developed facilely using an electrochemical method by switching the potential at ambient temperature. Because the Zn<sup>2+</sup> nodes were predominantly exposed on the (100) facets of ZIF-8, while the ligands were mainly exposed on the (110) facets. Hence, gold nanoparticles (AuNPs) showed differential glucose oxidase (GOx)-like activities when anchored in situ on different crystal facets of ZIF-8 and obeyed the following order ZIF-8<sub>c</sub>/Au>ZIF-8<sub>tr</sub>/Au>ZIF-8<sub>r</sub>/Au. Notably, both the metal nodes and aromatic linkers of ZIF-8 interacted with AuNPs through coordination and π-π interactions. The Zn<sup>2+</sup> nodes facilitated the formation of the electron-deficient Au species. The electron transfer from AuNPs to Zn<sup>2+</sup> sites effectively boosted the catalytic activity. It was known that directly tailoring the microenvironment at the supporting sites of noble metal catalysts to boost catalysis through a facile electrochemical method was not reported. Based on the favorable GOx-like activity and long-term stability of ZIF-8<sub>tr</sub>/Au, a highly sensitive electrochemical biosensing platform for assaying squamous cell carcinoma antigen (SCCA) was developed. It enabled fg-level detection of cancer marker.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114331"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast tailoring the ZIF-8 surface microenvironment at ambient temperature to boost glucose oxidase-like activity of AuNPs for biosensing.\",\"authors\":\"Xianrui Jiang, Tao Yao, Xingxin Shi, Hongliang Han, Zhanfang Ma\",\"doi\":\"10.1016/j.colsurfb.2024.114331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rational design and tailoring of the surface microenvironment surrounding the catalytic sites, such as noble metal nanoparticles, is an effective way to enhance the catalytic activity of mimicking enzymes. However, it remains on-going challenges to regulate the microenvironment of the catalytic sites due to the lack of tunable variability in structural precision of conventional solid catalysts. Herein, three types of zeolitic imidazolate framework-8 (ZIF-8) with different major crystal facet orientations, i.e., cubic with (100) facets (denoted ZIF-8<sub>c</sub>), truncated dodecahedral with (100), (110) facets (denoted ZIF-8<sub>tr</sub>), and dodecahedral with (110) facets (denoted ZIF-8<sub>r</sub>), were developed facilely using an electrochemical method by switching the potential at ambient temperature. Because the Zn<sup>2+</sup> nodes were predominantly exposed on the (100) facets of ZIF-8, while the ligands were mainly exposed on the (110) facets. Hence, gold nanoparticles (AuNPs) showed differential glucose oxidase (GOx)-like activities when anchored in situ on different crystal facets of ZIF-8 and obeyed the following order ZIF-8<sub>c</sub>/Au>ZIF-8<sub>tr</sub>/Au>ZIF-8<sub>r</sub>/Au. Notably, both the metal nodes and aromatic linkers of ZIF-8 interacted with AuNPs through coordination and π-π interactions. The Zn<sup>2+</sup> nodes facilitated the formation of the electron-deficient Au species. The electron transfer from AuNPs to Zn<sup>2+</sup> sites effectively boosted the catalytic activity. It was known that directly tailoring the microenvironment at the supporting sites of noble metal catalysts to boost catalysis through a facile electrochemical method was not reported. Based on the favorable GOx-like activity and long-term stability of ZIF-8<sub>tr</sub>/Au, a highly sensitive electrochemical biosensing platform for assaying squamous cell carcinoma antigen (SCCA) was developed. It enabled fg-level detection of cancer marker.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"245 \",\"pages\":\"114331\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114331\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114331","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Fast tailoring the ZIF-8 surface microenvironment at ambient temperature to boost glucose oxidase-like activity of AuNPs for biosensing.
Rational design and tailoring of the surface microenvironment surrounding the catalytic sites, such as noble metal nanoparticles, is an effective way to enhance the catalytic activity of mimicking enzymes. However, it remains on-going challenges to regulate the microenvironment of the catalytic sites due to the lack of tunable variability in structural precision of conventional solid catalysts. Herein, three types of zeolitic imidazolate framework-8 (ZIF-8) with different major crystal facet orientations, i.e., cubic with (100) facets (denoted ZIF-8c), truncated dodecahedral with (100), (110) facets (denoted ZIF-8tr), and dodecahedral with (110) facets (denoted ZIF-8r), were developed facilely using an electrochemical method by switching the potential at ambient temperature. Because the Zn2+ nodes were predominantly exposed on the (100) facets of ZIF-8, while the ligands were mainly exposed on the (110) facets. Hence, gold nanoparticles (AuNPs) showed differential glucose oxidase (GOx)-like activities when anchored in situ on different crystal facets of ZIF-8 and obeyed the following order ZIF-8c/Au>ZIF-8tr/Au>ZIF-8r/Au. Notably, both the metal nodes and aromatic linkers of ZIF-8 interacted with AuNPs through coordination and π-π interactions. The Zn2+ nodes facilitated the formation of the electron-deficient Au species. The electron transfer from AuNPs to Zn2+ sites effectively boosted the catalytic activity. It was known that directly tailoring the microenvironment at the supporting sites of noble metal catalysts to boost catalysis through a facile electrochemical method was not reported. Based on the favorable GOx-like activity and long-term stability of ZIF-8tr/Au, a highly sensitive electrochemical biosensing platform for assaying squamous cell carcinoma antigen (SCCA) was developed. It enabled fg-level detection of cancer marker.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.