Yidian Li , Yantao Cao , Liangyang Liu , Pai Peng , Hao Lin , Cuiying Pei , Mingxin Zhang , Heng Wu , Xian Du , Wenxuan Zhao , Kaiyi Zhai , Xuefeng Zhang , Jinkui Zhao , Miaoling Lin , Pingheng Tan , Yanpeng Qi , Gang Li , Hanjie Guo , Luyi Yang , Lexian Yang
{"title":"双层和三层镍酸盐超导体在密度波转变方面的超快动力学差异","authors":"Yidian Li , Yantao Cao , Liangyang Liu , Pai Peng , Hao Lin , Cuiying Pei , Mingxin Zhang , Heng Wu , Xian Du , Wenxuan Zhao , Kaiyi Zhai , Xuefeng Zhang , Jinkui Zhao , Miaoling Lin , Pingheng Tan , Yanpeng Qi , Gang Li , Hanjie Guo , Luyi Yang , Lexian Yang","doi":"10.1016/j.scib.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors La<em><sub>n</sub></em><sub>+1</sub>Ni<em><sub>n</sub></em>O<sub>3</sub><em><sub>n</sub></em><sub>+1</sub> (<em>n</em> = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ultrafast dynamics of the bilayer and trilayer nickelates at ambient pressure. We observe a coherent phonon mode in La<sub>4</sub>Ni<sub>3</sub>O<sub>10</sub> involving the collective vibration of La, Ni, and O atoms, which is absent in La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub>. Temperature-dependent relaxation time diverges near the density-wave transition temperature of La<sub>4</sub>Ni<sub>3</sub>O<sub>10</sub>, while it is inversely proportional to the temperature in La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> above ∼150 K, suggesting a non-Fermi liquid behavior of La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub>. Moreover, we estimate the electron–phonon coupling constants to be 0.05–0.07 and 0.12–0.16 for La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> and La<sub>4</sub>Ni<sub>3</sub>O<sub>10</sub>, respectively, suggesting a relatively minor role of electron–phonon coupling in the electronic properties of La<em><sub>n</sub></em><sub>+1</sub>Ni<em><sub>n</sub></em>O<sub>3</sub><em><sub>n</sub></em><sub>+1</sub> at ambient pressure. The relevant microscopic interaction and dynamic information are essential for further studying the interplay between superconductivity and density-wave transitions in nickelate superconductors.</div></div>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":"70 2","pages":"Pages 180-186"},"PeriodicalIF":18.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct ultrafast dynamics of bilayer and trilayer nickelate superconductors regarding the density-wave-like transitions\",\"authors\":\"Yidian Li , Yantao Cao , Liangyang Liu , Pai Peng , Hao Lin , Cuiying Pei , Mingxin Zhang , Heng Wu , Xian Du , Wenxuan Zhao , Kaiyi Zhai , Xuefeng Zhang , Jinkui Zhao , Miaoling Lin , Pingheng Tan , Yanpeng Qi , Gang Li , Hanjie Guo , Luyi Yang , Lexian Yang\",\"doi\":\"10.1016/j.scib.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors La<em><sub>n</sub></em><sub>+1</sub>Ni<em><sub>n</sub></em>O<sub>3</sub><em><sub>n</sub></em><sub>+1</sub> (<em>n</em> = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ultrafast dynamics of the bilayer and trilayer nickelates at ambient pressure. We observe a coherent phonon mode in La<sub>4</sub>Ni<sub>3</sub>O<sub>10</sub> involving the collective vibration of La, Ni, and O atoms, which is absent in La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub>. Temperature-dependent relaxation time diverges near the density-wave transition temperature of La<sub>4</sub>Ni<sub>3</sub>O<sub>10</sub>, while it is inversely proportional to the temperature in La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> above ∼150 K, suggesting a non-Fermi liquid behavior of La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub>. Moreover, we estimate the electron–phonon coupling constants to be 0.05–0.07 and 0.12–0.16 for La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> and La<sub>4</sub>Ni<sub>3</sub>O<sub>10</sub>, respectively, suggesting a relatively minor role of electron–phonon coupling in the electronic properties of La<em><sub>n</sub></em><sub>+1</sub>Ni<em><sub>n</sub></em>O<sub>3</sub><em><sub>n</sub></em><sub>+1</sub> at ambient pressure. The relevant microscopic interaction and dynamic information are essential for further studying the interplay between superconductivity and density-wave transitions in nickelate superconductors.</div></div>\",\"PeriodicalId\":421,\"journal\":{\"name\":\"Science Bulletin\",\"volume\":\"70 2\",\"pages\":\"Pages 180-186\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Bulletin\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095927324007503\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095927324007503","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Distinct ultrafast dynamics of bilayer and trilayer nickelate superconductors regarding the density-wave-like transitions
In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ultrafast dynamics of the bilayer and trilayer nickelates at ambient pressure. We observe a coherent phonon mode in La4Ni3O10 involving the collective vibration of La, Ni, and O atoms, which is absent in La3Ni2O7. Temperature-dependent relaxation time diverges near the density-wave transition temperature of La4Ni3O10, while it is inversely proportional to the temperature in La3Ni2O7 above ∼150 K, suggesting a non-Fermi liquid behavior of La3Ni2O7. Moreover, we estimate the electron–phonon coupling constants to be 0.05–0.07 and 0.12–0.16 for La3Ni2O7 and La4Ni3O10, respectively, suggesting a relatively minor role of electron–phonon coupling in the electronic properties of Lan+1NinO3n+1 at ambient pressure. The relevant microscopic interaction and dynamic information are essential for further studying the interplay between superconductivity and density-wave transitions in nickelate superconductors.
期刊介绍:
Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.