Quang-Hien Kha , Ngan Thi Kim Nguyen , Nguyen Quoc Khanh Le , Jiunn-Horng Kang
{"title":"开发并验证用于预测糖尿病口服药物药物相互作用的机器学习模型。","authors":"Quang-Hien Kha , Ngan Thi Kim Nguyen , Nguyen Quoc Khanh Le , Jiunn-Horng Kang","doi":"10.1016/j.ymeth.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"232 ","pages":"Pages 81-88"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications\",\"authors\":\"Quang-Hien Kha , Ngan Thi Kim Nguyen , Nguyen Quoc Khanh Le , Jiunn-Horng Kang\",\"doi\":\"10.1016/j.ymeth.2024.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.</div></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"232 \",\"pages\":\"Pages 81-88\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324002378\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002378","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.