Bin Wang , Nan Wang , Chengliang Duan , Jinpeng Li , Haoying Chen , Jun Xu , Jinsong Zeng , Wenhua Gao , Wenguang Wei
{"title":"利用酶/碱协同机制提取优质毛竹纤维。","authors":"Bin Wang , Nan Wang , Chengliang Duan , Jinpeng Li , Haoying Chen , Jun Xu , Jinsong Zeng , Wenhua Gao , Wenguang Wei","doi":"10.1016/j.ijbiomac.2024.137230","DOIUrl":null,"url":null,"abstract":"<div><div>As an emerging non-wood resource, moso bamboo has attracted extensive attention because of its short growth cycle and high holocellulose content. However, the internal structure of moso bamboo is more compact than that of wood, leading to higher chemical consumption during the pulping process, which greatly reduces the quality of the extracted fibers. Herein, an innovative pulping system including enzymes and alkali is proposed to achieve higher-quality extraction of moso bamboo fibers. Benefiting from the synergistic effects of high-temperature and alkali-resistant cellulase, xylanase, and laccase, supplemented with alkaline pulping, adequate retention and softening of moso bamboo fibers were ultimately achieved. The sample treated with an enzyme/alkali system resulted in a relative increase in fiber length of 7.19 % and a 31.26 % increase in beating efficiency over alkaline pulping. In addition, the tensile index and tearing index of the paper treated with the enzyme/alkali system reached 50.17 N·m·g<sup>−1</sup> and 9.12 mN·m<sup>2</sup>·g<sup>−1</sup>, which were 22.52 % and 20.53 % higher than those of the alkaline pulping, respectively. This work provides new insights into the production of high-performance moso bamboo fibers and paper with low energy and alkali consumption.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of high-quality moso bamboo fibers by enzyme/alkali synergistic mechanism\",\"authors\":\"Bin Wang , Nan Wang , Chengliang Duan , Jinpeng Li , Haoying Chen , Jun Xu , Jinsong Zeng , Wenhua Gao , Wenguang Wei\",\"doi\":\"10.1016/j.ijbiomac.2024.137230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an emerging non-wood resource, moso bamboo has attracted extensive attention because of its short growth cycle and high holocellulose content. However, the internal structure of moso bamboo is more compact than that of wood, leading to higher chemical consumption during the pulping process, which greatly reduces the quality of the extracted fibers. Herein, an innovative pulping system including enzymes and alkali is proposed to achieve higher-quality extraction of moso bamboo fibers. Benefiting from the synergistic effects of high-temperature and alkali-resistant cellulase, xylanase, and laccase, supplemented with alkaline pulping, adequate retention and softening of moso bamboo fibers were ultimately achieved. The sample treated with an enzyme/alkali system resulted in a relative increase in fiber length of 7.19 % and a 31.26 % increase in beating efficiency over alkaline pulping. In addition, the tensile index and tearing index of the paper treated with the enzyme/alkali system reached 50.17 N·m·g<sup>−1</sup> and 9.12 mN·m<sup>2</sup>·g<sup>−1</sup>, which were 22.52 % and 20.53 % higher than those of the alkaline pulping, respectively. This work provides new insights into the production of high-performance moso bamboo fibers and paper with low energy and alkali consumption.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813024080395\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024080395","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Extraction of high-quality moso bamboo fibers by enzyme/alkali synergistic mechanism
As an emerging non-wood resource, moso bamboo has attracted extensive attention because of its short growth cycle and high holocellulose content. However, the internal structure of moso bamboo is more compact than that of wood, leading to higher chemical consumption during the pulping process, which greatly reduces the quality of the extracted fibers. Herein, an innovative pulping system including enzymes and alkali is proposed to achieve higher-quality extraction of moso bamboo fibers. Benefiting from the synergistic effects of high-temperature and alkali-resistant cellulase, xylanase, and laccase, supplemented with alkaline pulping, adequate retention and softening of moso bamboo fibers were ultimately achieved. The sample treated with an enzyme/alkali system resulted in a relative increase in fiber length of 7.19 % and a 31.26 % increase in beating efficiency over alkaline pulping. In addition, the tensile index and tearing index of the paper treated with the enzyme/alkali system reached 50.17 N·m·g−1 and 9.12 mN·m2·g−1, which were 22.52 % and 20.53 % higher than those of the alkaline pulping, respectively. This work provides new insights into the production of high-performance moso bamboo fibers and paper with low energy and alkali consumption.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.